// DHelicalFit: class containing helix-based fitting routines assuming // uniform magnetic field // ///

Two sets of helix-based fitting routines are contained in this class:

/// ///

Quick Fit:

/// Do a very fast, linear-regression type fit on a set of hits. /// ///

This class allows one to define a set of 2D or 3D points /// which can then be fit to a circle (2D) or a helical track (3D) /// via the FitCircle() and FitTrack() methods. This is written /// in a generic way such that either CDC or FDC data or any /// combination of the two can be used.

/// ///

The QuickFit, as the name implies, is intended to be very fast. /// it will NOT produce a terribly accurate result.

/// ///

This will hopefully be useful in a couple of places: /// /// -# When trying to find clusters, it can be used to help /// reject outlying hits. /// -# In the Level-3 or filtering application, it can be used /// to quickly identify whether a cluster has a reasonable /// chance of becoming a "track" /// -# To find first-guess parameters for tracks which can /// be used as the starting point for real track fitting. ///

/// ///

To use this class, simply instantiate it and then repeatedly /// call one of the AddHit methods to add points you want to /// fit. When all of the points have been added, invoke either /// the FitCircle() (2D) or FitTrack() (3D) method to perform the fit. /// Note that since the fits are done using a linear regression /// style and other "one-pass" calculations, there is no iteration. /// It also assumes the same error for each point.

/// ///

The fit results are stored in public members of the class. /// The x0,y0 members represent the coordinates of the center of /// the 2D circle in whatever units the hits had when added. The /// chisq value is just the sum of the squares of the differences /// between each hit's distance from x0,y0 and \f$ r_0=\sqrt{x_0^2 + y_0^2} \f$. /// p_trans will have the transverse component of the particle's /// momentum.

/// ///

A few methods are available to remove hits which do not /// match certain criteria. These include PruneHits() and /// PruneWorst() (both of with call PruneHit()). See the notes /// in each for more info.

/// ///

2) Riemann Helical Fit

/// ///

This approach also a has a circle fit and an extension to a helix. /// The circle fit maps points on a circle to a Riemann surface such that the /// task of finding the radius and center of a circle for the helix projected /// onto a plane perpendicular to the beam line becomes the task of obtaining /// the normal vector for a plane slicing this surface. The (0,0) point does /// not have to be included for the fit to work, but it can be included as a /// fuzzy fake point to better constrain pT. The extension to a helix for the /// forward direction requires a linear regression relating the arc length /// between measurements and z, from which the dip angle can be determined.

#ifndef _DHELICAL_FIT_H_ #define _DHELICAL_FIT_H_ #include using namespace std; #include #include #include #include "FDC/DFDCPseudo.h" #include "JANA/jerror.h" #include #ifndef atan2f #define atan2f(x,y) atan2((double)x,(double)y) #endif class DMagneticFieldMap; typedef struct{ float x,y,z; ///< point in lab coordinates double covx,covy,covxy; ///< error info for x and y coordinates float phi_circle; ///< phi angle relative to axis of helix float chisq; ///< chi-sq contribution of this hit }DHFHit_t; class DHelicalFit{ public: DHelicalFit(void); DHelicalFit(const DHelicalFit &fit); DHelicalFit& operator=(const DHelicalFit& fit); void Copy(const DHelicalFit &fit); ~DHelicalFit(); jerror_t AddHit(float r, float phi, float z); jerror_t AddHitXYZ(float x, float y, float z); jerror_t AddHitXYZ(float x,float y, float z,float covx,float covy, float covxy); jerror_t AddHit(const DFDCPseudo *fdchit); jerror_t PruneHit(int idx); jerror_t Clear(void); jerror_t FitCircle(void); double ChisqCircle(void); jerror_t FitCircleRiemann(void); jerror_t FitCircleRiemann(float z_vertex,float BeamRMS); jerror_t FitCircleRiemannCorrected(float rc); jerror_t FitLineRiemann(void); jerror_t GetChargeRiemann(void); jerror_t GetChargeRiemann(float rc); jerror_t FitCircleStraightTrack(); void SearchPtrans(double ptrans_max=9.0, double ptrans_step=0.5); void QuickPtrans(void); jerror_t GuessChargeFromCircleFit(void); jerror_t FitTrack(void); jerror_t FitTrackRiemann(float rc); jerror_t FitCircleAndLineRiemann(float rc); jerror_t FitTrack_FixedZvertex(float z_vertex); jerror_t FitLine_FixedZvertex(float z_vertex); jerror_t Fill_phi_circle(vector hits, float x0, float y0); inline const vector GetHits() const {return hits;} inline int GetNhits() const {return hits.size();} inline const DMagneticFieldMap * GetMagneticFieldMap() const {return bfield;} inline float GetBzAvg() const {return Bz_avg;} inline float GetZMean() const {return z_mean;} inline float GetPhiMean() const {return phi_mean;} jerror_t PrintChiSqVector(void) const; jerror_t Print(void) const; jerror_t Dump(void) const; inline void SetMagneticFieldMap(const DMagneticFieldMap *map){bfield=map;} // for Riemann plane void GetPlaneParameters(double &c,DVector3 &n){ c=c_origin; n.SetXYZ(N[0],N[1],N[2]); }; enum ChiSqSourceType_t{ NOFIT, CIRCLE, TRACK }; float x0,y0,r0; float q; float p, p_trans; float phi, theta, tanl; float z_vertex; float chisq; int ndof; float dzdphi; ChiSqSourceType_t chisq_source; DVector3 normal; double c_origin; // distance to "origin" for Riemann circle fit protected: vector hits; const DMagneticFieldMap *bfield; ///< pointer to magnetic field map float Bz_avg; float z_mean, phi_mean; jerror_t FillTrackParams(void); private: // Covariance matrices DMatrix *CovR_; DMatrix *CovRPhi_; // Riemann circle fit parameters double N[3]; double xavg[3],var_avg; }; #endif //_DHELICAL_FIT_H_