*------------------------------------------------------------------------ * fixes by rtj: The computation of the cartesian bounds of a volume with * cylindrical symmetry (eg. TUBE, CONE, PGON, PCON, CTUB) * was faulty in the original geant321 library source file, * in the case where the symmetry axis was close to aligned * with the z axis, and the cartesian bounds were asked for * along the x or y direction. If the direction cosine of * the placed volume's cylindrical axis was greater than * 0.99 then it was treated as if it were exactly aligned, * with direction cosine 1. This is very bad in the case * of a long skinny tube, like a stereo layer drift tube in * a drift chamber, because the transverse extent of the * tube is much greater than its diameter when it is * rotated away from 0 degrees. I changed the cutoff in * the axis direction cosine from 0.99 to 0.999999 to * reduce the impact of this approximation, but it should * be kept in mind that tubes with extremely large aspect * ratios greater than a million-to-one (might happen for * very long thin wires) might still be underestimated if * their stereo angle is on the order of a milliradian. *------------------------------------------------------------------------ * * $Id: gvdcar.F,v 1.1.1.1 1995/10/24 10:20:56 cernlib Exp $ * * $Log: gvdcar.F,v $ * Revision 1.1.1.1 1995/10/24 10:20:56 cernlib * Geant * * #include "geant321/pilot.h" *CMZ : 3.21/03 10/10/94 20.01.58 by S.Giani *-- Author : SUBROUTINE GVDCAR(IAXIS,ISH,IROT,PARS,CL,CH,IERR) C. C. ***************************************************************** C. * * C. * ROUTINE TO FIND THE LIMITS ALONG AXIS IAXIS IN CARTESIAN * C. * COORDINATES FOR VOLUME OF SHAPE ISH ROTATED BY THE * C. * ROTATION MATRIX IROT. THE SHAPE HAS NPAR PARAMETERS IN * C. * THE ARRAY PARS. THE LOWER LIMIT IS RETURNED IN CL, THE * C. * HIGHER IN CH. IF THE CALCULATION CANNOT BE MADE IERR IS * C. * SET TO 1 OTHERWISE IT IS SET TO 0. * C. * * C. * ==>Called by : GVDLIM * C. * Author S.Giani ******** * C. * * C. ***************************************************************** C. #include "geant321/gcbank.inc" #include "geant321/gconsp.inc" #include "geant321/gcshno.inc" DIMENSION PARS(50),X(3),XT(3) C. C. --------------------------------------------------- C. IERR=1 IF (ISH.GT.4.AND.ISH.NE.10.AND.ISH.NE.28) GO TO 40 C C CUBOIDS, TRAPEZOIDS, PARALLELEPIPEDS. C C IERR=0 CL=0 CH=0 C DO 30 IP=1,8 C C THIS IS A LOOP OVER THE 8 CORNERS. C FIRST FIND THE LOCAL COORDINATES. C IF(ISH.EQ.28) THEN C C General twisted trapezoid. C IL=(IP+1)/2 I0=IL*4+11 IS=(IP-IL*2)*2+1 X(3)=PARS(1)*IS X(1)=PARS(I0)+PARS(I0+2)*X(3) X(2)=PARS(I0+1)+PARS(I0+3)*X(3) GO TO 20 C ENDIF C IP3=ISH+2 IF(ISH.EQ.10) IP3=3 IF(ISH.EQ.4) IP3=1 X(3)=PARS(IP3) IF(IP.LE.4) X(3)=-X(3) IP2=3 IF(ISH.GT.2.AND.X(3).GT.0.0) IP2=4 IF(ISH.EQ.1.OR.ISH.EQ.10) IP2=2 IF(ISH.EQ.4) IP2=4 IF(ISH.EQ.4.AND.X(3).GT.0.0) IP2=8 X(2)=PARS(IP2) IF(MOD(IP+3,4).LT.2) X(2)=-X(2) IP1=1 IF(ISH.NE.1.AND.ISH.NE.10.AND.X(3).GT.0.0) IP1=2 IF(ISH.EQ.4) IP1=5 IF(ISH.EQ.4.AND.X(3).GT.0.0) IP1=IP1+4 IF(ISH.EQ.4.AND.X(2).GT.0.0) IP1=IP1+1 X(1)=PARS(IP1) IF(MOD(IP,2).EQ.1) X(1)=-X(1) C IF(ISH.NE.10) GO TO 10 X(1)=X(1)+X(2)*PARS(4)+X(3)*PARS(5) X(2)=X(2)+X(3)*PARS(6) 10 CONTINUE C IF(ISH.NE.4) GO TO 20 IP4=7 IF(X(3).GT.0.0) IP4=11 X(1)=X(1)+X(2)*PARS(IP4)+X(3)*PARS(2) X(2)=X(2)+X(3)*PARS(3) 20 CONTINUE C C ROTATE. C JROT=LQ(JROTM-IROT) XT(1)=X(1) XT(2)=X(2) XT(3)=X(3) IF(IROT.NE.0) CALL GINROT(X,Q(JROT+1),XT) C C UPDATE LIMITS IF NECESSARY. C IF(XT(IAXIS).LT.CL) CL=XT(IAXIS) IF(XT(IAXIS).GT.CH) CH=XT(IAXIS) C 30 CONTINUE C GO TO 999 C 40 CONTINUE IF(ISH.EQ.9) GO TO 90 C C TUBES , CONES, POLYGONS, POLYCONES. C AND CUT TUBES. C MYFLAG=0 IF((ISH.EQ.11.OR.ISH.EQ.12).AND.(IAXIS.LT.3))THEN MYFLAG=1 ENDIF X(1)=0.0 X(2)=0.0 X(3)=1.0 JROT=LQ(JROTM-IROT) XT(1)=X(1) XT(2)=X(2) XT(3)=X(3) IF(IROT.NE.0) CALL GINROT(X,Q(JROT+1),XT) C C XT IS Z AXIS ROTATED. C IF(MYFLAG.EQ.0)THEN c fixes by RTJ: c IF(ABS(XT(IAXIS)).LT.0.99) GO TO 50 if(abs(xt(iaxis)).lt.0.999999) go to 50 ELSE c IF(ABS(XT(3)).LT.0.99) GO TO 50 if(abs(xt(3)).lt.0.999999) go to 50 c end of fixes by RTJ: ENDIF IF(ISH.EQ.11)GO TO 45 IF(ISH.EQ.12)GO TO 46 C C PARALLEL. C IP=3 IF(ISH.GT.6.AND.ISH.NE.NSCTUB.AND.ISH.NE.13.AND.ISH.NE.14) IP=1 CL=-PARS(IP) CH=PARS(IP) IERR=0 C GO TO 999 45 IF(MYFLAG.EQ.0)THEN NZLAST=PARS(4) IZLAST=2+3*NZLAST CL=PARS(5) GO TO 49 ELSEIF(MYFLAG.EQ.1)THEN NZLAST=PARS(4) IZLAST=2+3*NZLAST TMPRAD=0. DO 145 I=7,IZLAST+2,3 IF(PARS(I).GT.TMPRAD)TMPRAD=PARS(I) 145 CONTINUE PHIMIN=PARS(1) PHIMAX=PHIMIN+PARS(2) AANG=ABS(PHIMAX-PHIMIN) NANG=PARS(3) AATMAX=NANG*360./AANG LATMAX=AATMAX ALA=AATMAX-LATMAX IF(ALA.GT..5)LATMAX=LATMAX+1 AFINV=1./COS(PI/LATMAX) FINV=ABS(AFINV) R=TMPRAD*FINV CL=-R CH= R IERR=0 GOTO 999 ENDIF C 46 IF(MYFLAG.EQ.0)THEN NZLAST=PARS(3) IZLAST=1+3*NZLAST CL=PARS(4) ELSEIF(MYFLAG.EQ.1)THEN NZLAST=PARS(3) IZLAST=1+3*NZLAST TMPRAD=0. DO 146 I=6,IZLAST+2,3 IF(PARS(I).GT.TMPRAD)TMPRAD=PARS(I) 146 CONTINUE CL=-TMPRAD CH= TMPRAD IERR=0 GOTO 999 ENDIF C 49 CH=PARS(IZLAST) IF ( ABS(XT(IAXIS)-X(IAXIS)) .GT.1.) THEN TEMP = CL CL = -CH CH = -TEMP ENDIF IERR=0 GO TO 999 C 50 CONTINUE ** IF(ISH.EQ.13) THEN CL=-PARS(IAXIS) CH=PARS(IAXIS) IERR=0 GOTO 999 ENDIF ** IF(ISH.EQ.14) THEN C for hyperboloid, use escribed cylinder CH = SQRT(PARS(2)**2+(PARS(3)*TAN(PARS(4)*DEGRAD))**2) CL = -CH IERR=0 GOTO 999 ENDIF ** IF(ISH.GT.10.AND.ISH.NE.NSCTUB)GO TO 999 IF(ABS(XT(IAXIS)).GT.0.01) GO TO 70 C C Z AXIS PERPENDICULAR TO IAXIS. ASSUME COMPLETE TUBE OR C CONE (I.E. IGNORE PHI SEGMENTATION). C IF(ISH.GT.6.AND.ISH.NE.NSCTUB) GO TO 60 C CL=-PARS(2) CH=PARS(2) IERR=0 IF(ISH.EQ.6)THEN RMIN=PARS(1) RMAX=PARS(2) IF(IROT.NE.0)THEN IF(Q(JROT+15).EQ.0.)THEN PHI1=(PARS(4)+Q(JROT+12))*DEGRAD PHI2=(PARS(5)+Q(JROT+12))*DEGRAD ELSEIF(Q(JROT+15).EQ.180.)THEN PHI1=(PARS(4)+Q(JROT+12)-(PARS(5)-PARS(4)))*DEGRAD PHI2=(PARS(5)+Q(JROT+12)-(PARS(5)-PARS(4)))*DEGRAD ELSE GOTO 999 ENDIF ELSE PHI1=PARS(4)*DEGRAD PHI2=PARS(5)*DEGRAD ENDIF IF(IAXIS.EQ.1)THEN IF(PHI1.GE.0..AND.PHI2.LE.PI)THEN XMIN1=RMIN*COS(PHI2) XMIN2=RMAX*COS(PHI2) CL=MIN(XMIN1,XMIN2) XMAX1=RMIN*COS(PHI1) XMAX2=RMAX*COS(PHI1) CH=MAX(XMAX1,XMAX2) ELSEIF(PHI1.GE.PI.AND.PHI2.LE.TWOPI.OR. + PHI1.GE.-PI.AND.PHI2.LE.0.)THEN XMIN1=RMIN*COS(PHI1) XMIN2=RMAX*COS(PHI1) CL=MIN(XMIN1,XMIN2) XMAX1=RMIN*COS(PHI2) XMAX2=RMAX*COS(PHI2) CH=MAX(XMAX1,XMAX2) ELSEIF(PHI1.LT.0..AND.PHI2.GT.0..AND. + (PHI2-PHI1).LE.PI)THEN XMIN1=RMIN*COS(PHI2) XMIN2=RMIN*COS(PHI1) CL1=MIN(XMIN1,XMIN2) XMIN3=RMAX*COS(PHI2) XMIN4=RMAX*COS(PHI1) CL2=MIN(XMIN3,XMIN4) CL=MIN(CL1,CL2) CH=RMAX ELSEIF(PHI1.LT.PI.AND.PHI2.GT.PI.AND. + (PHI2-PHI1).LE.PI)THEN CL=-RMAX XMAX1=RMIN*COS(PHI2) XMAX2=RMIN*COS(PHI1) CH1=MAX(XMAX1,XMAX2) XMAX3=RMAX*COS(PHI2) XMAX4=RMAX*COS(PHI1) CH2=MAX(XMAX3,XMAX4) CH=MAX(CH1,CH2) ENDIF ELSEIF(IAXIS.EQ.2)THEN IF(PHI1.GE.(-PI*.5).AND.PHI2.LE.(PI*.5))THEN YMIN1=RMIN*SIN(PHI1) YMIN2=RMAX*SIN(PHI1) CL=MIN(YMIN1,YMIN2) YMAX1=RMIN*SIN(PHI2) YMAX2=RMAX*SIN(PHI2) CH=MAX(YMAX1,YMAX2) ELSEIF(PHI1.GE.(PI*.5).AND.PHI2.LE.(PI*3*.5))THEN YMIN1=RMIN*SIN(PHI2) YMIN2=RMAX*SIN(PHI2) CL=MIN(YMIN1,YMIN2) YMAX1=RMIN*SIN(PHI1) YMAX2=RMAX*SIN(PHI1) CH=MAX(YMAX1,YMAX2) ELSEIF(PHI1.LT.(PI*.5).AND.PHI2.GT.(PI*.5).AND. + (PHI2-PHI1).LE.PI)THEN YMIN1=RMIN*SIN(PHI2) YMIN2=RMIN*SIN(PHI1) CL1=MIN(YMIN1,YMIN2) YMIN3=RMAX*SIN(PHI2) YMIN4=RMAX*SIN(PHI1) CL2=MIN(YMIN3,YMIN4) CL=MIN(CL1,CL2) CH=RMAX ELSEIF(((PHI1.LT.(PI*3*.5).AND.PHI2.GT.(PI*3*.5)).OR. + (PHI1.LT.-(PI*.5).AND.PHI2.GT.-(PI*.5))) + .AND.(PHI2-PHI1).LE.PI)THEN CL=-RMAX YMAX1=RMIN*SIN(PHI2) YMAX2=RMIN*SIN(PHI1) CH1=MAX(YMAX1,YMAX2) YMAX3=RMAX*SIN(PHI2) YMAX4=RMAX*SIN(PHI1) CH2=MAX(YMAX3,YMAX4) CH=MAX(CH1,CH2) ENDIF ENDIF ENDIF C GO TO 999 C 60 CONTINUE C RM=PARS(3) IF(PARS(5).GT.PARS(3)) RM=PARS(5) C CL=-RM CH=RM IERR=0 C GO TO 999 C 70 CONTINUE C C ARBITRARY ROTATION. C DZ=PARS(3) RM=PARS(2) IF(ISH.EQ.13) THEN ** ** approxime to a cylinder whit radius ** equal to the ellipse major axis ** IF(PARS(1).GT.RM) RM=PARS(1) GOTO 80 ENDIF ** IF(ISH.EQ.14) THEN RM = SQRT(PARS(2)**2+(PARS(3)*TAN(PARS(4)*DEGRAD))**2) GO TO 80 ENDIF * IF(ISH.EQ.NSCTUB) THEN S1 = (1.0-PARS(8))*(1.0+PARS(8)) IF( S1 .GT. 0.0) S1 = SQRT(S1) S2 = (1.0-PARS(11))*(1.0+PARS(11)) IF( S2 .GT. 0.0) S2 = SQRT(S2) IF( S2 .GT. S1 ) S1 = S2 DZ = DZ+RM*S1 ENDIF IF(ISH.LE.6) GO TO 80 C DZ=PARS(1) RM=PARS(3) IF(PARS(5).GT.RM) RM=PARS(5) C 80 CONTINUE C COST=ABS(XT(IAXIS)) SINT=(1+COST)*(1-COST) IF(SINT.GT.0.0) SINT=SQRT(SINT) C CH=COST*DZ+SINT*RM CL=-CH IERR=0 C GO TO 999 90 CONTINUE C C SPHERE - ASSUME COMPLETE SPHERE, TAKE OUTER RADIUS. C IERR=0 CL=-PARS(2) CH=PARS(2) C 999 CONTINUE END