#include #ifndef USE_SSE2 // Matrix class without SIMD instructions class DMatrix5x5{ public: DMatrix5x5(){ for (unsigned int i=0;i<5;i++) for (unsigned int j=0;j<5;j++) mA[i][j]=0.; } // Copy constructor DMatrix5x5(const DMatrix5x5 &m2){ for (unsigned int i=0;i<5;i++){ for (unsigned int j=0;j<5;j++){ mA[i][j]=m2(i,j); } } } ~DMatrix5x5(){}; // Constructor using block matrices from matrix inversion DMatrix5x5(const DMatrix2x2 &A,const DMatrix2x3 &B, const DMatrix3x2 &C,const DMatrix3x3 &D){ mA[0][0]=A(0,0); mA[0][1]=A(0,1); mA[1][0]=A(1,0); mA[1][1]=A(1,1); for (unsigned int i=0;i<2;i++){ for (unsigned int j=0;j<3;j++){ mA[i][j+2]=B(i,j); } } for (unsigned int i=0;i<3;i++){ for (unsigned int j=0;j<2;j++){ mA[i+2][j]=C(i,j); mA[i+2][j+2]=D(i,j); } mA[i+2][4]=D(i,2); } } // Access by indices double &operator() (int row, int col){ return mA[row][col]; } double operator() (int row, int col) const{ return mA[row][col]; } // Assignment operator DMatrix5x5 &operator=(const DMatrix5x5 &m1){ for (unsigned int i=0;i<5;i++){ for (unsigned int j=0;j<5;j++){ mA[i][j]=m1(i,j); } } return *this; } // Find the transpose of this matrix DMatrix5x5 Transpose(){ DMatrix5x5 temp; for (unsigned int i=0;i<5;i++){ for (unsigned int j=0;j<5;j++){ temp(i,j)=mA[j][i]; } } return temp; } // Matrix addition DMatrix5x5 operator+(const DMatrix5x5 &m2) const{ DMatrix5x5 temp; for (unsigned int row=0;row<5;row++){ for (unsigned int col=0;col<5;col++){ temp(row,col)=mA[row][col]+m2(row,col); } } return temp; } DMatrix5x5 &operator+=(const DMatrix5x5 &m2){ for (unsigned int i=0;i<5;i++){ for (unsigned int j=0;j<5;j++){ mA[i][j]+=m2(i,j); } } return *this; } // Method for adding symmetric matrices DMatrix5x5 AddSym(const DMatrix5x5 &m2) const{ DMatrix5x5 temp; for (unsigned int i=0;i<5;i++){ for (unsigned int j=i;j<5;j++){ temp(i,j)=mA[i][j]+m2(i,j); temp(j,i)=temp(i,j); } } return temp; } // Method for subtracting symmetric matrices DMatrix5x5 SubSym(const DMatrix5x5 &m2) const{ DMatrix5x5 temp; for (unsigned int i=0;i<5;i++){ for (unsigned int j=i;j<5;j++){ temp(i,j)=mA[i][j]-m2(i,j); temp(j,i)=temp(i,j); } } return temp; } // Matrix subtraction DMatrix5x5 operator-(const DMatrix5x5 &m2) const{ DMatrix5x5 temp; for (unsigned int row=0;row<5;row++){ for (unsigned int col=0;col<5;col++){ temp(row,col)=mA[row][col]-m2(row,col); } } return temp; } DMatrix5x5 &operator-=(const DMatrix5x5 &m2){ for (unsigned int i=0;i<5;i++){ for (unsigned int j=0;j<5;j++){ mA[i][j]-=m2(i,j); } } return *this; } // Matrix multiplication: (5x5) x (5x1) DMatrix5x1 operator*(const DMatrix5x1 &m2){ return DMatrix5x1(mA[0][0]*m2(0)+mA[0][1]*m2(1)+mA[0][2]*m2(2) +mA[0][3]*m2(3)+mA[0][4]*m2(4), mA[1][0]*m2(0)+mA[1][1]*m2(1)+mA[1][2]*m2(2) +mA[1][3]*m2(3)+mA[1][4]*m2(4), mA[2][0]*m2(0)+mA[2][1]*m2(1)+mA[2][2]*m2(2) +mA[2][3]*m2(3)+mA[2][4]*m2(4), mA[3][0]*m2(0)+mA[3][1]*m2(1)+mA[3][2]*m2(2) +mA[3][3]*m2(3)+mA[3][4]*m2(4), mA[4][0]*m2(0)+mA[4][1]*m2(1)+mA[4][2]*m2(2) +mA[4][3]*m2(3)+mA[4][4]*m2(4)); } // Matrix multiplication: (5x5) x (5x2) DMatrix5x2 operator*(const DMatrix5x2 &m2){ return DMatrix5x2(mA[0][0]*m2(0,0)+mA[0][1]*m2(1,0)+mA[0][2]*m2(2,0) +mA[0][3]*m2(3,0)+mA[0][4]*m2(4,0), mA[0][0]*m2(0,1)+mA[0][1]*m2(1,1)+mA[0][2]*m2(2,1) +mA[0][3]*m2(3,1)+mA[0][4]*m2(4,1), mA[1][0]*m2(0,0)+mA[1][1]*m2(1,0)+mA[1][2]*m2(2,0) +mA[1][3]*m2(3,0)+mA[1][4]*m2(4,0), mA[1][0]*m2(0,1)+mA[1][1]*m2(1,1)+mA[1][2]*m2(2,1) +mA[1][3]*m2(3,1)+mA[1][4]*m2(4,1), mA[2][0]*m2(0,0)+mA[2][1]*m2(1,0)+mA[2][2]*m2(2,0) +mA[2][3]*m2(3,0)+mA[2][4]*m2(4,0), mA[2][0]*m2(0,1)+mA[2][1]*m2(1,1)+mA[2][2]*m2(2,1) +mA[2][3]*m2(3,1)+mA[2][4]*m2(4,1), mA[3][0]*m2(0,0)+mA[3][1]*m2(1,0)+mA[3][2]*m2(2,0) +mA[3][3]*m2(3,0)+mA[3][4]*m2(4,0), mA[3][0]*m2(0,1)+mA[3][1]*m2(1,1)+mA[3][2]*m2(2,1) +mA[3][3]*m2(3,1)+mA[3][4]*m2(4,1), mA[4][0]*m2(0,0)+mA[4][1]*m2(1,0)+mA[4][2]*m2(2,0) +mA[4][3]*m2(3,0)+mA[4][4]*m2(4,0), mA[4][0]*m2(0,1)+mA[4][1]*m2(1,1)+mA[4][2]*m2(2,1) +mA[4][3]*m2(3,1)+mA[4][4]*m2(4,1) ); } // Matrix multiplication: (5x5) x (5x5) DMatrix5x5 operator*(const DMatrix5x5 &m2){ DMatrix5x5 temp; for (unsigned int j=0;j<5;j++){ for (unsigned int i=0;i<5;i++){ double temp2=0.; for (unsigned int k=0;k<5;k++){ temp2+=mA[j][k]*m2(k,i); } temp(j,i)=temp2; } } return temp; } // Zero out the matrix DMatrix5x5 Zero(){ for (unsigned int i=0;i<5;i++){ for (unsigned int j=0;j<5;j++){ mA[i][j]=0.; } } return *this; } // Matrix inversion by blocks for a symmetric matrix DMatrix5x5 InvertSym(){ DMatrix2x2 A(mA[0][0],mA[0][1],mA[1][0],mA[1][1]); DMatrix3x2 C(mA[2][0],mA[2][1],mA[3][0],mA[3][1],mA[4][0],mA[4][1]); DMatrix3x2 CAinv=C*A.Invert(); DMatrix3x3 D(mA[2][2],mA[2][3],mA[2][4],mA[3][2],mA[3][3],mA[3][4], mA[4][2],mA[4][3],mA[4][4]); DMatrix2x3 B(mA[0][2],mA[0][3],mA[0][4],mA[1][2],mA[1][3],mA[1][4]); DMatrix2x3 BDinv=B*D.InvertSym(); DMatrix2x2 AA=(A-BDinv*C).Invert(); DMatrix3x3 DD=(D-CAinv*B).InvertSym(); return DMatrix5x5(AA,-AA*BDinv,-DD*CAinv,DD); } // The following code performs the matrix operation ABA^T, where B is a symmetric matrix. The end // result is also a symmetric matrix. DMatrix5x5 SandwichMultiply(const DMatrix5x5 &A){ DMatrix5x5 temp; double sums[5]={0}; // First row/column of ACA^T for (unsigned int i=0;i<5;i++){ for (unsigned k=0;k<5;k++){ sums[i]+=mA[i][k]*A(0,k); } } for (unsigned int i=0;i<5;i++){ for (unsigned int k=0;k<5;k++){ temp(i,0)+=A(i,k)*sums[k]; } temp(0,i)=temp(i,0); } // Second row/column of ACA^T for (unsigned i=0;i<5;i++){ sums[i]=0.; for (unsigned k=0;k<5;k++){ sums[i]+=mA[i][k]*A(1,k); } } for (unsigned int i=1;i<5;i++){ for (unsigned int k=0;k<5;k++){ temp(i,1)+=A(i,k)*sums[k]; } temp(1,i)=temp(i,1); } // Third row/column of ACA^T for (unsigned i=0;i<5;i++){ sums[i]=0.; for (unsigned k=0;k<5;k++){ sums[i]+=mA[i][k]*A(2,k); } } for (unsigned int i=2;i<5;i++){ for (unsigned int k=0;k<5;k++){ temp(i,2)+=A(i,k)*sums[k]; } temp(2,i)=temp(i,2); } // Fourth row/column of ACA^T for (unsigned i=0;i<5;i++){ sums[i]=0.; for (unsigned k=0;k<5;k++){ sums[i]+=mA[i][k]*A(3,k); } } for (unsigned int i=3;i<5;i++){ for (unsigned int k=0;k<5;k++){ temp(i,3)+=A(i,k)*sums[k]; } temp(3,i)=temp(i,3); } // Last entry ACA^T[4][4] for (unsigned i=0;i<5;i++){ sums[i]=0.; for (unsigned k=0;k<5;k++){ sums[i]+=mA[i][k]*A(4,k); } } for (unsigned int k=0;k<5;k++){ temp(4,4)+=A(4,k)*sums[k]; } return temp; } double SandwichMultiply(const DMatrix5x1 &A){ double a1=A(0),a2=A(1),a3=A(2),a4=A(3),a5=A(4); return a1*(a1*mA[0][0]+2.*a2*mA[0][1]+2.*a3*mA[0][2]+2.*a4*mA[0][3] +2.*a5*mA[0][4]) +a2*(a2*mA[1][1]+2.*a3*mA[1][2]+2.*a4*mA[1][3]+2.*a5*mA[1][4]) +a3*(a3*mA[2][2]+2.*a4*mA[2][3]+2.*a5*mA[2][4]) +a4*(a4*mA[3][3]+2.*a5*mA[3][4]) +a5*a5*mA[4][4]; } void Print(){ cout << "DMatrix5x5:" <