//************************************************************************ // DFDCSegment_factory.cc - factory producing track segments from pseudopoints //************************************************************************ #include "DFDCSegment_factory.h" #include "DANA/DApplication.h" //#include "HDGEOMETRY/DLorentzMapCalibDB.h" #include #define HALF_CELL 0.5 #define MAX_DEFLECTION 0.15 #define EPS 1e-8 #define KILL_RADIUS 5.0 #define Z_TARGET 65.0 #define Z_VERTEX_CUT 25.0 #define MATCH_RADIUS 5.0 #define ADJACENT_MATCH_RADIUS 1.0 #define SIGN_CHANGE_CHISQ_CUT 10.0 #define BEAM_VARIANCE 0.01 // cm^2 #define USED_IN_SEGMENT 0x8 #define CORRECTED 0x10 #define MAX_ITER 10 #define TARGET_LENGTH 30.0 //cm #define MIN_TANL 2.0 #define ONE_THIRD 0.33333333333333333 #define SQRT3 1.73205080756887719 // Variance for position along wire using PHENIX angle dependence, transverse // diffusion, and an intrinsic resolution of 127 microns. inline double fdc_y_variance(double alpha,double x){ return 0.00060+0.0064*tan(alpha)*tan(alpha)+0.0004*fabs(x); } bool DFDCSegment_package_cmp(const DFDCPseudo* a, const DFDCPseudo* b) { return a->wire->layer>b->wire->layer; } DFDCSegment_factory::DFDCSegment_factory() { _log = new JStreamLog(std::cout, "FDCSEGMENT >>"); *_log << "File initialized." << endMsg; } /// /// DFDCSegment_factory::~DFDCSegment_factory(): /// default destructor -- closes log file /// DFDCSegment_factory::~DFDCSegment_factory() { delete _log; } /// /// DFDCSegment_factory::brun(): /// Initialization: read in deflection map, get magnetic field map /// jerror_t DFDCSegment_factory::brun(JEventLoop* eventLoop, int eventNo) { DApplication* dapp=dynamic_cast(eventLoop->GetJApplication()); bfield = dapp->GetBfield(); lorentz_def=dapp->GetLorentzDeflections(); *_log << "Table of Lorentz deflections initialized." << endMsg; return NOERROR; } /// /// DFDCSegment_factory::evnt(): /// Routine where pseudopoints are combined into track segments /// jerror_t DFDCSegment_factory::evnt(JEventLoop* eventLoop, int eventNo) { myeventno=eventNo; vectorpseudopoints; eventLoop->Get(pseudopoints); // Skip segment finding if there aren't enough points to form a sensible // segment if (pseudopoints.size()>=3){ // Group pseudopoints by package vectorpackage[4]; for (vector::const_iterator i=pseudopoints.begin(); i!=pseudopoints.end();i++){ package[((*i)->wire->layer-1)/6].push_back(*i); } // Find the segments in each package for (int j=0;j<4;j++){ std::sort(package[j].begin(),package[j].end(),DFDCSegment_package_cmp); // We need at least 3 points to define a circle, so skip if we don't // have enough points. if (package[j].size()>2) FindSegments(package[j]); } } // pseudopoints>2 return NOERROR; } // Riemann Line fit: linear regression of s on z to determine the tangent of // the dip angle and the z position of the closest approach to the beam line. // Also returns predicted positions along the helical path. // jerror_t DFDCSegment_factory::RiemannLineFit(vectorpoints, DMatrix &CR,vector&XYZ){ unsigned int n=points.size()+1; vectorbad(n); // Keep track of "bad" intersection points // Fill matrix of intersection points for (unsigned int m=0;mxy.Mod2(); double denom= N[0]*N[0]+N[1]*N[1]; double numer=dist_to_origin+r2*N[2]; double ratio=numer/denom; DVector2 xy_int0(-N[0]*ratio,-N[1]*ratio); double temp=denom*r2-numer*numer; if (temp<0){ bad[m]=1; XYZ[m].xy=xy_int0; continue; } temp=sqrt(temp)/denom; // Choose sign of square root based on proximity to actual measurements DVector2 delta(N[1]*temp,-N[0]*temp); DVector2 xy1=xy_int0+delta; DVector2 xy2=xy_int0-delta; double diff1=(xy1-points[m]->xy).Mod2(); double diff2=(xy2-points[m]->xy).Mod2(); if (diff1>diff2){ XYZ[m].xy=xy2; } else{ XYZ[m].xy=xy1; } } // Fake target point XYZ[n-1].xy.Set(0.,0.); // All arc lengths are measured relative to some reference plane with a hit. // Don't use a "bad" hit for the reference... unsigned int start=0; for (unsigned int i=0;i1?2.*rc*(M_PI/2.):2.*rc*asin(ratio)); //z=XYZ(k,2); z=XYZ[k].z; // Assume errors in s dominated by errors in R double inv_var=1./CR(k,k); sumv+=inv_var; sumy+=sperp*inv_var; sumx+=z*inv_var; sumxx+=z*z*inv_var; sumxy+=sperp*z*inv_var; // Save the current x and y coordinates //oldx=XYZ(k,0); //oldy=XYZ(k,1); oldxy=XYZ[k].xy; } } Delta=sumv*sumxx-sumx*sumx; // Track parameters z0 and tan(lambda) tanl=-Delta/(sumv*sumxy-sumy*sumx); //z0=(sumxx*sumy-sumx*sumxy)/Delta*tanl; // Error in tanl var_tanl=sumv/Delta*(tanl*tanl*tanl*tanl); // Vertex position sperp-=sperp_old; if (tanl<0){ // a negative tanl makes no sense for FDC segments if we // assume that the particle came from the target zvertex=Z_TARGET; tanl=(zlast-zvertex)/sperp; } else{ zvertex=zlast-tanl*sperp; } return NOERROR; } // Use predicted positions (propagating from plane 1 using a helical model) to // update the R and RPhi covariance matrices. // jerror_t DFDCSegment_factory::UpdatePositionsAndCovariance(unsigned int n, double r1sq,vector&XYZ,DMatrix &CRPhi,DMatrix &CR){ double delta_x=XYZ[ref_plane].xy.X()-xc; double delta_y=XYZ[ref_plane].xy.Y()-yc; double r1=sqrt(r1sq); double denom=delta_x*delta_x+delta_y*delta_y; // Auxiliary matrices for correcting for non-normal track incidence to FDC // The correction is // CRPhi'= C*CRPhi*C+S*CR*S, where S(i,i)=R_i*kappa/2 // and C(i,i)=sqrt(1-S(i,i)^2) DMatrix C(n,n); DMatrix S(n,n); // Predicted positions Phi1=atan2(delta_y,delta_x); double z1=XYZ[ref_plane].z; double y1=XYZ[ref_plane].xy.X(); double x1=XYZ[ref_plane].xy.Y(); double var_R1=CR(ref_plane,ref_plane); for (unsigned int k=0;k0){ S(k,k)=stemp; C(k,k)=sqrt(ctemp); } else{ S(k,k)=0.; C(k,k)=1.; } } // Correction for non-normal incidence of track on FDC CRPhi=C*CRPhi*C+S*CR*S; return NOERROR; } // Riemann Circle fit: points on a circle in x,y project onto a plane cutting // the circular paraboloid surface described by (x,y,x^2+y^2). Therefore the // task of fitting points in (x,y) to a circle is transormed to the taks of // fitting planes in (x,y, w=x^2+y^2) space // jerror_t DFDCSegment_factory::RiemannCircleFit(vectorpoints, DMatrix &CRPhi){ unsigned int n=points.size()+1; DMatrix X(n,3); DMatrix Xavg(1,3); DMatrix A(3,3); // vector of ones DMatrix OnesT(1,n); double W_sum=0.; DMatrix W(n,n); // The goal is to find the eigenvector corresponding to the smallest // eigenvalue of the equation // lambda=n^T (X^T W X - W_sum Xavg^T Xavg)n // where n is the normal vector to the plane slicing the cylindrical // paraboloid described by the parameterization (x,y,w=x^2+y^2), // and W is the weight matrix, assumed for now to be diagonal. // In the absence of multiple scattering, W_sum is the sum of all the // diagonal elements in W. // At this stage we ignore the multiple scattering. for (unsigned int i=0;ixy.X(); X(i,1)=points[i]->xy.Y(); X(i,2)=points[i]->xy.Mod2(); OnesT(0,i)=1.; W(i,i)=1./CRPhi(i,i); W_sum+=W(i,i); } unsigned int last_index=n-1; OnesT(0,last_index)=1.; W(last_index,last_index)=1./CRPhi(last_index,last_index); W_sum+=W(last_index,last_index); var_avg=1./W_sum; Xavg=var_avg*(OnesT*(W*X)); // Store in private array for use in other routines xavg[0]=Xavg(0,0); xavg[1]=Xavg(0,1); xavg[2]=Xavg(0,2); A=DMatrix(DMatrix::kTransposed,X)*(W*X) -W_sum*(DMatrix(DMatrix::kTransposed,Xavg)*Xavg); if(!A.IsValid())return UNRECOVERABLE_ERROR; // The characteristic equation is // lambda^3+B2*lambda^2+lambda*B1+B0=0 // double B2=-(A(0,0)+A(1,1)+A(2,2)); double B1=A(0,0)*A(1,1)-A(1,0)*A(0,1)+A(0,0)*A(2,2)-A(2,0)*A(0,2) +A(1,1)*A(2,2)-A(2,1)*A(1,2); double B0=-A.Determinant(); if(B0==0 || !finite(B0))return UNRECOVERABLE_ERROR; // The roots of the cubic equation are given by // lambda1= -B2/3 + S+T // lambda2= -B2/3 - (S+T)/2 + i sqrt(3)/2. (S-T) // lambda3= -B2/3 - (S+T)/2 - i sqrt(3)/2. (S-T) // where we define some temporary variables: // S= (R+sqrt(Q^3+R^2))^(1/3) // T= (R-sqrt(Q^3+R^2))^(1/3) // Q=(3*B1-B2^2)/9 // R=(9*B2*B1-27*B0-2*B2^3)/54 // sum=S+T; // diff=i*(S-T) // We divide Q and R by a safety factor to prevent multiplying together // enormous numbers that cause unreliable results. double Q=(3.*B1-B2*B2)/9.e4; double R=(9.*B2*B1-27.*B0-2.*B2*B2*B2)/54.e6; double Q1=Q*Q*Q+R*R; if (Q1<0) Q1=sqrt(-Q1); else{ return VALUE_OUT_OF_RANGE; } // DeMoivre's theorem for fractional powers of complex numbers: // (r*(cos(theta)+i sin(theta)))^(p/q) // = r^(p/q)*(cos(p*theta/q)+i sin(p*theta/q)) // //double temp=100.*pow(R*R+Q1*Q1,0.16666666666666666667); double temp=100.*sqrt(cbrt(R*R+Q1*Q1)); double theta1=ONE_THIRD*atan2(Q1,R); double sum_over_2=temp*cos(theta1); double diff_over_2=-temp*sin(theta1); // Third root double lambda_min=-ONE_THIRD*B2-sum_over_2+SQRT3*diff_over_2; // Normal vector to plane N[0]=1.; N[1]=(A(1,0)*A(0,2)-(A(0,0)-lambda_min)*A(1,2)) /(A(0,1)*A(2,1)-(A(1,1)-lambda_min)*A(0,2)); N[2]=(A(2,0)*(A(1,1)-lambda_min)-A(1,0)*A(2,1)) /(A(1,2)*A(2,1)-(A(2,2)-lambda_min)*(A(1,1)-lambda_min)); // Normalize: n1^2+n2^2+n3^2=1 double denom=sqrt(N[0]*N[0]+N[1]*N[1]+N[2]*N[2]); for (int i=0;i<3;i++){ N[i]/=denom; } // Distance to origin dist_to_origin=-(N[0]*Xavg(0,0)+N[1]*Xavg(0,1)+N[2]*Xavg(0,2)); // Center and radius of the circle xc=-N[0]/2./N[2]; yc=-N[1]/2./N[2]; rc=sqrt(1.-N[2]*N[2]-4.*dist_to_origin*N[2])/2./fabs(N[2]); return NOERROR; } // Riemann Helical Fit based on transforming points on projection to x-y plane // to a circular paraboloid surface combined with a linear fit of the arc // length versus z. Uses RiemannCircleFit and RiemannLineFit. // jerror_t DFDCSegment_factory::RiemannHelicalFit(vectorpoints, DMatrix &CR,vector&XYZ){ double Phi; unsigned int num_points=points.size()+1; DMatrix CRPhi(num_points,num_points); // Fill initial matrices for R and RPhi measurements XYZ[num_points-1].z=Z_TARGET; for (unsigned int m=0;mwire->origin.z(); //Phi=atan2(points[m]->y,points[m]->x); Phi=points[m]->xy.Phi(); double cosPhi=cos(Phi); double sinPhi=sin(Phi); double Phi_cosPhi=Phi*cosPhi; double Phi_sinPhi=Phi*sinPhi; CRPhi(m,m) =(Phi_cosPhi-sinPhi)*(Phi_cosPhi-sinPhi)*points[m]->covxx +(Phi_sinPhi+cosPhi)*(Phi_sinPhi+cosPhi)*points[m]->covyy +2.*(Phi_sinPhi+cosPhi)*(Phi_cosPhi-sinPhi)*points[m]->covxy; CR(m,m)=cosPhi*cosPhi*points[m]->covxx +sinPhi*sinPhi*points[m]->covyy +2.*sinPhi*cosPhi*points[m]->covxy; } CR(points.size(),points.size())=BEAM_VARIANCE; CRPhi(points.size(),points.size())=BEAM_VARIANCE; // Reference track: jerror_t error=NOERROR; // First find the center and radius of the projected circle error=RiemannCircleFit(points,CRPhi); if (error!=NOERROR) return error; // Get reference track estimates for z0 and tanl and intersection points // (stored in XYZ) error=RiemannLineFit(points,CR,XYZ); if (error!=NOERROR) return error; // Guess particle charge (+/-1); charge=GetCharge(points.size(),XYZ,CR,CRPhi); double r1sq=XYZ[ref_plane].xy.Mod2(); UpdatePositionsAndCovariance(num_points,r1sq,XYZ,CRPhi,CR); // Preliminary circle fit error=RiemannCircleFit(points,CRPhi); if (error!=NOERROR) return error; // Preliminary line fit error=RiemannLineFit(points,CR,XYZ); if (error!=NOERROR) return error; // Guess particle charge (+/-1); charge=GetCharge(points.size(),XYZ,CR,CRPhi); r1sq=XYZ[ref_plane].xy.Mod2(); UpdatePositionsAndCovariance(num_points,r1sq,XYZ,CRPhi,CR); // Final circle fit error=RiemannCircleFit(points,CRPhi); if (error!=NOERROR) return error; // Final line fit error=RiemannLineFit(points,CR,XYZ); if (error!=NOERROR) return error; // Guess particle charge (+/-1) charge=GetCharge(points.size(),XYZ,CR,CRPhi); // Final update to covariance matrices ref_plane=0; r1sq=XYZ[ref_plane].xy.Mod2(); UpdatePositionsAndCovariance(num_points,r1sq,XYZ,CRPhi,CR); // Store residuals and path length for each measurement chisq=0.; for (unsigned int m=0;mxy).Mod2()/CR(m,m); } return NOERROR; } // DFDCSegment_factory::FindSegments // Associate nearest neighbors within a package with track segment candidates. // Provide guess for (seed) track parameters // jerror_t DFDCSegment_factory::FindSegments(vectorpoints){ // Clear all the "used" flags; used.clear(); // Put indices for the first point in each plane before the most downstream // plane in the vector x_list. double old_z=points[0]->wire->origin.z(); vectorx_list; x_list.push_back(0); for (unsigned int i=0;iwire->origin.z()!=old_z){ x_list.push_back(i); } old_z=points[i]->wire->origin.z(); } x_list.push_back(points.size()); unsigned int start=0; // loop over the start indices, starting with the first plane while (startxy; // Create list of nearest neighbors vectorneighbors; neighbors.push_back(points[i]); unsigned int match=0; double delta,delta_min=1000.; for (unsigned int k=0;kxy).Mod(); if (deltaxy; used[match]=true; neighbors.push_back(points[match]); } } unsigned int num_neighbors=neighbors.size(); // Skip to next segment seed if we don't have enough points to fit a // circle if (num_neighbors<3) continue; bool do_sort=false; // Look for hits adjacent to the ones we have in our segment candidate for (unsigned int k=0;kxy-neighbors[j]->xy).Mod(); if (deltawire->wire-points[k]->wire->wire)==1 && neighbors[j]->wire->origin.z()==points[k]->wire->origin.z()){ used[k]=true; neighbors.push_back(points[k]); do_sort=true; } } } // Sort if we added another point if (do_sort) std::sort(neighbors.begin(),neighbors.end(),DFDCSegment_package_cmp); // list of points on track and the corresponding covariances vectorXYZ(neighbors.size()+1); DMatrix CR(neighbors.size()+1,neighbors.size()+1); // Arc lengths in helical model are referenced relative to the plane // ref_plane within a segment. For a 6 hit segment, ref_plane=2 is // roughly in the center of the segment. ref_plane=2; // Perform the Riemann Helical Fit on the track segment jerror_t error=RiemannHelicalFit(neighbors,CR,XYZ); /// initial hit-based fit if (error==NOERROR){ // Estimate for azimuthal angle phi0=atan2(-xc,yc); if (charge<0) phi0+=M_PI; // Look for distance of closest approach nearest to target D=-charge*rc-xc/sin(phi0); // Creat a new segment DFDCSegment *segment = new DFDCSegment; // Initialize seed track parameters segment->q=charge; //charge segment->phi0=phi0; // Phi segment->D=D; // D=distance of closest approach to origin segment->tanl=tanl; // tan(lambda), lambda=dip angle segment->z_vertex=zvertex;// z-position at closest approach to origin segment->hits=neighbors; segment->xc=xc; segment->yc=yc; segment->rc=rc; segment->Phi1=Phi1; segment->chisq=chisq; _data.push_back(segment); } } } // Look for a new plane to start looking for a segment while (start&XYZ, DMatrix &CR, DMatrix &CRPhi){ double inv_var=0.; double sumv=0.; double sumy=0.; double sumx=0.; double sumxx=0.,sumxy=0,Delta; double slope,r2; double phi_old=XYZ[0].xy.Phi(); for (unsigned int k=0;kM_PI){ if (phi_old<0) phi_z-=2.*M_PI; else phi_z+=2.*M_PI; } r2=XYZ[k].xy.Mod2(); inv_var=r2/(CRPhi(k,k)+phi_z*phi_z*CR(k,k)); sumv+=inv_var; sumy+=phi_z*inv_var; sumx+=tempz*inv_var; sumxx+=tempz*tempz*inv_var; sumxy+=phi_z*tempz*inv_var; phi_old=phi_z; } Delta=sumv*sumxx-sumx*sumx; slope=(sumv*sumxy-sumy*sumx)/Delta; // Guess particle charge (+/-1); if (slope<0.) return -1.; return 1.; } //---------------------------------------------------------------------------- // The following routine is no longer in use: // Correct avalanche position along wire and incorporate drift data for // coordinate away from the wire using results of preliminary hit-based fit // //#define R_START 7.6 //#define Z_TOF 617.4 //#include "HDGEOMETRY/DLorentzMapCalibDB.h //#define SC_V_EFF 15. //#define SC_LIGHT_GUIDE 140. //#define SC_CENTER 38.75 //#define TOF_BAR_LENGTH 252.0 //#define TOF_V_EFF 15. //#define FDC_X_RESOLUTION 0.028 //#define FDC_Y_RESOLUTION 0.02 //cm /* jerror_t DFDCSegment_factory::CorrectPoints(vectorpoints, DMatrix XYZ){ // dip angle double lambda=atan(tanl); double alpha=M_PI/2.-lambda; if (alpha == 0. || rc==0.) return VALUE_OUT_OF_RANGE; // Get Bfield, needed to guess particle momentum double Bx,By,Bz,B; double x=XYZ(ref_plane,0); double y=XYZ(ref_plane,1); double z=XYZ(ref_plane,2); bfield->GetField(x,y,z,Bx,By,Bz); B=sqrt(Bx*Bx+By*By+Bz*Bz); // Momentum and beta double p=0.002998*B*rc/cos(lambda); double beta=p/sqrt(p*p+0.140*0.140); // Correct start time for propagation from (0,0) double my_start_time=0.; if (use_tof){ //my_start_time=ref_time-(Z_TOF-Z_TARGET)/sin(lambda)/beta/29.98; // If we need to use the tof, the angle relative to the beam line is // small enough that sin(lambda) ~ 1. my_start_time=ref_time-(Z_TOF-Z_TARGET)/beta/29.98; //my_start_time=0; } else{ double ratio=R_START/2./rc; if (ratio<=1.) my_start_time=ref_time -2.*rc*asin(R_START/2./rc)*(1./cos(lambda)/beta/29.98); else my_start_time=ref_time -rc*M_PI*(1./cos(lambda)/beta/29.98); } //my_start_time=0.; for (unsigned int m=0;mwire->udir(1); double sinangle=point->wire->udir(0); x=XYZ(m,0); y=XYZ(m,1); z=point->wire->origin.z(); double delta_x=0,delta_y=0; // Variances based on expected resolution double sigx2=FDC_X_RESOLUTION*FDC_X_RESOLUTION; // Find difference between point on helical path and wire double w=x*cosangle-y*sinangle-point->w; // .. and use it to determine which sign to use for the drift time data double sign=(w>0?1.:-1.); // Correct the drift time for the flight path and convert to distance units // assuming the particle is a pion delta_x=sign*(point->time-fdc_track[m].s/beta/29.98-my_start_time)*55E-4; // Variance for position along wire. Includes angle dependence from PHENIX // and transverse diffusion double sigy2=fdc_y_variance(alpha,delta_x); // Next find correction to y from table of deflections delta_y=lorentz_def->GetLorentzCorrection(x,y,z,alpha,delta_x); // Fill x and y elements with corrected values point->ds =-delta_y; point->dw =delta_x; point->x=(point->w+point->dw)*cosangle+(point->s+point->ds)*sinangle; point->y=-(point->w+point->dw)*sinangle+(point->s+point->ds)*cosangle; point->covxx=sigx2*cosangle*cosangle+sigy2*sinangle*sinangle; point->covyy=sigx2*sinangle*sinangle+sigy2*cosangle*cosangle; point->covxy=(sigy2-sigx2)*sinangle*cosangle; point->status|=CORRECTED; } return NOERROR; } */