// $Id$ // // File: DReferenceTrajectory.cc // Created: Wed Jul 19 13:42:58 EDT 2006 // Creator: davidl (on Darwin swire-b241.jlab.org 8.7.0 powerpc) // #include #include using namespace std; #include "DReferenceTrajectory.h" #include "DTrackCandidate.h" #include "DMagneticFieldStepper.h" #include "HDGEOMETRY/DRootGeom.h" #define ONE_THIRD 0.33333333333333333 #define TWO_THIRD 0.66666666666666667 #define EPS 1e-8 #define NaN std::numeric_limits::quiet_NaN() struct StepStruct {DReferenceTrajectory::swim_step_t steps[256];}; //--------------------------------- // DReferenceTrajectory (Constructor) //--------------------------------- DReferenceTrajectory::DReferenceTrajectory(const DMagneticFieldMap *bfield , double q , swim_step_t *swim_steps , int max_swim_steps , double step_size) { // Copy some values into data members this->q = q; this->step_size = step_size; this->bfield = bfield; this->Nswim_steps = 0; this->dist_to_rt_depth = 0; this->mass = 0.13957; // assume pion mass until otherwise specified this->hit_cdc_endplate = false; this->RootGeom=NULL; this->geom = NULL; this->ploss_direction = kForward; this->check_material_boundaries = true; this->last_phi = 0.0; this->last_swim_step = NULL; this->last_dist_along_wire = 0.0; this->last_dz_dphi = 0.0; this->debug_level = 0; // Initialize some values from configuration parameters BOUNDARY_STEP_FRACTION = 0.80; MIN_STEP_SIZE = 0.05; // cm MAX_STEP_SIZE = 3.0; // cm int MAX_SWIM_STEPS = 10000; gPARMS->SetDefaultParameter("TRK:BOUNDARY_STEP_FRACTION" , BOUNDARY_STEP_FRACTION, "Fraction of estimated distance to boundary to use as step size"); gPARMS->SetDefaultParameter("TRK:MIN_STEP_SIZE" , MIN_STEP_SIZE, "Minimum step size in cm to take when swimming a track with adaptive step sizes"); gPARMS->SetDefaultParameter("TRK:MAX_STEP_SIZE" , MAX_STEP_SIZE, "Maximum step size in cm to take when swimming a track with adaptive step sizes"); gPARMS->SetDefaultParameter("TRK:MAX_SWIM_STEPS" , MAX_SWIM_STEPS, "Number of swim steps for DReferenceTrajectory to allocate memory for (when not using external buffer)"); // It turns out that the greatest bottleneck in speed here comes from // allocating/deallocating the large block of memory required to hold // all of the trajectory info. The preferred way of calling this is // with a pointer allocated once at program startup. This code block // though allows it to be allocated here if necessary. if(!swim_steps){ own_swim_steps = true; this->max_swim_steps = MAX_SWIM_STEPS; this->swim_steps = new swim_step_t[this->max_swim_steps]; }else{ own_swim_steps = false; this->max_swim_steps = max_swim_steps; this->swim_steps = swim_steps; } } //--------------------------------- // DReferenceTrajectory (Copy Constructor) //--------------------------------- DReferenceTrajectory::DReferenceTrajectory(const DReferenceTrajectory& rt) { /// The copy constructor will always allocate its own memory for the /// swim steps and set its internal flag to indicate that is owns them /// regardless of the owner of the source trajectory's. this->Nswim_steps = rt.Nswim_steps; this->q = rt.q; this->max_swim_steps = rt.max_swim_steps; this->own_swim_steps = true; this->step_size = rt.step_size; this->bfield = rt.bfield; this->last_phi = rt.last_phi; this->last_swim_step = rt.last_swim_step; this->last_dist_along_wire = rt.last_dist_along_wire; this->last_dz_dphi = rt.last_dz_dphi; this->RootGeom = rt.RootGeom; this->geom = rt.geom; this->dist_to_rt_depth = 0; this->mass = rt.GetMass(); this->ploss_direction = rt.ploss_direction; this->check_material_boundaries = rt.GetCheckMaterialBoundaries(); this->BOUNDARY_STEP_FRACTION = rt.GetBoundaryStepFraction(); this->MIN_STEP_SIZE = rt.GetMinStepSize(); this->MAX_STEP_SIZE = rt.GetMaxStepSize(); this->swim_steps = new swim_step_t[this->max_swim_steps]; for(int i=0; iNswim_steps = rt.Nswim_steps; this->q = rt.q; this->max_swim_steps = rt.max_swim_steps; this->own_swim_steps = true; this->step_size = rt.step_size; this->bfield = rt.bfield; this->last_phi = rt.last_phi; this->last_swim_step = rt.last_swim_step; this->last_dist_along_wire = rt.last_dist_along_wire; this->last_dz_dphi = rt.last_dz_dphi; this->RootGeom = rt.RootGeom; this->geom = rt.geom; this->dist_to_rt_depth = rt.dist_to_rt_depth; this->mass = rt.GetMass(); this->ploss_direction = rt.ploss_direction; this->check_material_boundaries = rt.GetCheckMaterialBoundaries(); this->BOUNDARY_STEP_FRACTION = rt.GetBoundaryStepFraction(); this->MIN_STEP_SIZE = rt.GetMinStepSize(); this->MAX_STEP_SIZE = rt.GetMaxStepSize(); // Allocate memory if needed if(swim_steps==NULL)this->swim_steps = new swim_step_t[this->max_swim_steps]; // Copy swim steps for(int i=0; i0. && step_size<0.0 && geom){ double KrhoZ_overA=0.0; double rhoZ_overA=0.0; double LogI=0.0; double X0=0.0; if (geom->FindMatALT1(mypos,mymom,KrhoZ_overA,rhoZ_overA,LogI,X0) ==NOERROR){ // Calculate momentum loss due to ionization dP_dx = dPdx(mymom.Mag(), KrhoZ_overA, rhoZ_overA,LogI); double my_step_size = 0.0001/fabs(dP_dx); if(my_step_size>MAX_STEP_SIZE)my_step_size=MAX_STEP_SIZE; // maximum step size in cm if(my_step_size0 && dP_dx<0.){ double ptot=mymom.Mag(); if (ploss_direction==kForward) ptot+=dP_dx*ds; else ptot-=dP_dx*ds; mymom.SetMag(ptot); stepper.SetStartingParams(q, &mypos, &mymom); } // Break if we have passed the wire DVector3 wirepos=wire->origin; if (fabs(wire->udir.z())>0.){ // for CDC wires wirepos+=((mypos.z()-wire->origin.z())/wire->udir.z())*wire->udir; } doca=(wirepos-mypos).Mag(); if (doca>old_doca) break; // Store the position and momentum for this step last_pos=mypos; last_mom=mymom; } } //--------------------------------- // Swim //--------------------------------- void DReferenceTrajectory::Swim(const DVector3 &pos, const DVector3 &mom, double q, double smax, const DCoordinateSystem *wire) { /// (Re)Swim the trajectory starting from pos with momentum mom. /// This will use the charge and step size (if given) passed to /// the constructor when the object was created. It will also /// (re)use the sim_step buffer, replacing it's contents. // If the charged passed to us is greater that 10, it means use the charge // already stored in the class. Otherwise, use what was passed to us. if(fabs(q)>10) q = this->q; else this->q = q; DMagneticFieldStepper stepper(bfield, q, &pos, &mom); if(step_size>0.0)stepper.SetStepSize(step_size); // Step until we hit a boundary (don't track more than 20 meters) swim_step_t *swim_step = this->swim_steps; double t=0.; Nswim_steps = 0; double itheta02 = 0.0; double itheta02s = 0.0; double itheta02s2 = 0.0; swim_step_t *last_step=NULL; // Magnetic field double Bz_old=0; // Reset flag indicating whether we hit the CDC endplate // and get the parameters of the endplate so we can check // if we hit it while swimming. hit_cdc_endplate = false; #if 0 // The GetCDCEndplate call goes all the way back to the XML and slows down // overall tracking by a factor of 20. Therefore, we skip finding it // and just hard-code the values instead. 1/28/2011 DL double cdc_endplate_z=150+17; // roughly, from memory double cdc_endplate_dz=5.0; // roughly, from memory double cdc_endplate_rmin=10.0; // roughly, from memory double cdc_endplate_rmax=55.0; // roughly, from memory if(geom)geom->GetCDCEndplate(cdc_endplate_z, cdc_endplate_dz, cdc_endplate_rmin, cdc_endplate_rmax); double cdc_endplate_zmin = cdc_endplate_z - cdc_endplate_dz/2.0; double cdc_endplate_zmax = cdc_endplate_zmin + cdc_endplate_dz; #else double cdc_endplate_rmin=10.0; // roughly, from memory double cdc_endplate_rmax=55.0; // roughly, from memory double cdc_endplate_zmin = 167.6; double cdc_endplate_zmax = 168.2; #endif // Get Bfield from stepper to initialize Bz_old DVector3 B; stepper.GetBField(B); Bz_old = B.z(); for(double s=0; fabs(s)=this->max_swim_steps){ jerr<<__FILE__<<":"<<__LINE__<<" Too many steps in trajectory. Truncating..."<sdir, swim_step->tdir, swim_step->udir); stepper.GetPosMom(swim_step->origin, swim_step->mom); swim_step->Ro = stepper.GetRo(); swim_step->s = s; swim_step->t = t; //magnitude of momentum and beta double p=swim_step->mom.Mag(); double beta=1./sqrt(1.+mass*mass/p/p); // Add material if geom or RootGeom is not NULL // If both are non-NULL, then use RootGeom double dP = 0.0; double dP_dx=0.0; double s_to_boundary=1.0E6; // initialize to "infinity" in case we don't set this below if(RootGeom || geom){ double KrhoZ_overA=0.0; double rhoZ_overA=0.0; double LogI=0.0; double X0=0.0; jerror_t err; if(RootGeom){ double rhoZ_overA,rhoZ_overA_logI; err = RootGeom->FindMatLL(swim_step->origin, rhoZ_overA, rhoZ_overA_logI, X0); KrhoZ_overA=0.1535e-3*rhoZ_overA; LogI=rhoZ_overA_logI/rhoZ_overA; }else{ if(check_material_boundaries){ err = geom->FindMatALT1(swim_step->origin, swim_step->mom, KrhoZ_overA, rhoZ_overA,LogI, X0, &s_to_boundary); }else{ err = geom->FindMatALT1(swim_step->origin, swim_step->mom, KrhoZ_overA, rhoZ_overA,LogI, X0); } // Check if we hit the CDC endplate double z = swim_step->origin.Z(); if(z>=cdc_endplate_zmin && z<=cdc_endplate_zmax){ double r = swim_step->origin.Perp(); if(r>=cdc_endplate_rmin && r<=cdc_endplate_rmax){ hit_cdc_endplate = true; } } } if(err == NOERROR){ if(X0>0.0){ double delta_s = s; if(last_step)delta_s -= last_step->s; double radlen = delta_s/X0; if(radlen>1.0E-5){ // PDG 2008 pg 271, second to last paragraph double theta0 = 0.0136/(p*beta)*sqrt(radlen)*(1.0+0.038*log(radlen)); // From PDG 2008 eq 27.12 double theta02 = theta0*theta0; itheta02 += theta02; itheta02s += s*theta02; itheta02s2 += s*s*theta02; } // Calculate momentum loss due to ionization dP_dx = dPdx(p, KrhoZ_overA, rhoZ_overA,LogI); } } last_step = swim_step; } swim_step->itheta02 = itheta02; swim_step->itheta02s = itheta02s; swim_step->itheta02s2 = itheta02s2; // Adjust step size to take smaller steps in regions of high momentum loss or field gradient if(step_size<0.0){ // step_size<0 indicates auto-calculated step size // Take step so as to change momentum by 100keV //double my_step_size=p/fabs(dP_dx)*0.01; double my_step_size = 0.0001/fabs(dP_dx); // Now check the field gradient #if 0 stepper.GetBField(B); double Bz = B.z(); if (fabs(Bz-Bz_old)>EPS){ double my_step_size_B=0.01*my_step_size *fabs(Bz/(Bz_old-Bz)); if (my_step_size_BMAX_STEP_SIZE)my_step_size=MAX_STEP_SIZE; // maximum step size in cm if(my_step_sizedP = dP; // n.b. stepper has been updated for next round but we're still on present step // Adjust momentum due to ionization losses if(dP!=0.0){ DVector3 pos, mom; stepper.GetPosMom(pos, mom); double ptot = mom.Mag() - dP; // correct for energy loss bool ranged_out = false; if(ptot<0.0)ranged_out=true; if(dP<0.0 && ploss_direction==kForward)ranged_out=true; if(dP>0.0 && ploss_direction==kBackward)ranged_out=true; if(mom.Mag()==0.0)ranged_out=true; if(ranged_out){ Nswim_steps++; // This will at least allow for very low momentum particles to have 1 swim step break; } mom.SetMag(ptot); stepper.SetStartingParams(q, &pos, &mom); } // update flight time t+=ds/(beta*SPEED_OF_LIGHT); s += ds; // Exit loop if we leave the tracking volume if(swim_step->origin.Perp()>88.0 && swim_step->origin.Z()<407.0){Nswim_steps++; break;} // ran into BCAL if (swim_step->origin.X()>129. || swim_step->origin.Y()>129.) {Nswim_steps++; break;} // left extent of TOF if(swim_step->origin.Z()>1100.0){Nswim_steps++; break;} // ran into FCAL if(swim_step->origin.Z()<0.0){Nswim_steps++; break;} // exit upstream if(wire && Nswim_steps>0){ // optionally check if we passed a wire we're supposed to be swimming to swim_step_t *closest_step = FindClosestSwimStep(wire); if(++closest_step!=swim_step){Nswim_steps++; break;} } } // OK. At this point the positions of the trajectory in the lab // frame have been recorded along with the momentum of the // particle and the directions of reference trajectory // coordinate system at each point. } // Routine to find position on the trajectory where the track crosses a radial // position R. Also returns the path length to this position. jerror_t DReferenceTrajectory::GetIntersectionWithRadius(double R, DVector3 &mypos, double *s, double *t) const{ if(Nswim_steps<1){ _DBG_<<"No swim steps! You must \"Swim\" the track before calling GetIntersectionWithRadius(...)"<origin.Perp()>R){ step=swim_step; break; } if (swim_step->origin.Z()>407.0) return VALUE_OUT_OF_RANGE; last_step=swim_step; } if (step==NULL||last_step==NULL) return VALUE_OUT_OF_RANGE; // At this point, the location where the track intersects the cyclinder // is somewhere between last_step and step. For simplicity, we're going // to just find the intersection of the cylinder with the line that joins // the 2 positions. We do this by working in the X/Y plane only and // finding the value of "alpha" which is the fractional distance the // intersection point is between last_pos and mypos. We'll then apply // the alpha found in the 2D X/Y space to the 3D x/y/Z space to find // the actual intersection point. DVector2 x1(last_step->origin.X(), last_step->origin.Y()); DVector2 x2(step->origin.X(), step->origin.Y()); DVector2 dx = x2-x1; double A = dx.Mod2(); double B = 2.0*(x1.X()*dx.X() + x1.Y()*dx.Y()); double C = x1.Mod2() - R*R; double alpha1 = (-B + sqrt(B*B-4.0*A*C))/(2.0*A); double alpha2 = (-B - sqrt(B*B-4.0*A*C))/(2.0*A); double alpha = alpha1; if(alpha1<0.0 || alpha1>1.0)alpha=alpha2; if(!finite(alpha))return VALUE_OUT_OF_RANGE; DVector3 delta = step->origin - last_step->origin; mypos = last_step->origin + alpha*delta; // The value of s actually represents the pathlength // to the outside point. Adjust it back to the // intersection point (approximately). if (s) *s = step->s-(1.0-alpha)*delta.Mag(); // flight time if (t){ double p=step->mom.Mag(); double beta=1./sqrt(1.+mass*mass/p/p); *t = step->t-(1.0-alpha)*delta.Mag()/beta/SPEED_OF_LIGHT; } return NOERROR; } //--------------------------------- // GetIntersectionWithPlane //--------------------------------- void DReferenceTrajectory::GetIntersectionWithPlane(const DVector3 &origin, const DVector3 &norm, DVector3 &pos, double *s,double *t) const{ DVector3 dir; GetIntersectionWithPlane(origin,norm,pos,dir,s,t); } void DReferenceTrajectory::GetIntersectionWithPlane(const DVector3 &origin, const DVector3 &norm, DVector3 &pos, DVector3 &dir, double *s,double *t) const { /// Get the intersection point of this trajectory with a plane. /// The plane is specified by origin and norm. The /// origin vector should give the coordinates of any point /// on the plane and norm should give a vector normal to /// the plane. The norm vector will be copied and normalized /// so it can be of any magnitude upon entry. /// /// The coordinates of the intersection point will copied into /// the supplied pos vector. If a non-NULL pointer for s /// is passed in, the pathlength of the trajectory from its begining /// to the intersection point is copied into location pointed to. // Set reasonable defaults pos.SetXYZ(0,0,0); if(s)*s=0.0; // Find the closest swim step to the position where the track crosses // the plane swim_step_t *step = FindPlaneCrossing(origin,norm); // Kludge for tracking to forward detectors assuming that the planes // are perpendicular to the beam line if (step && step->origin.Z()>600. ){ double p=step->mom.Mag(); //double ds=(origin.z()-step->origin.z())*p/step->mom.z(); double dz_over_pz=(origin.z()-step->origin.z())/step->mom.z(); double ds=p*dz_over_pz; pos.SetXYZ(step->origin.x()+dz_over_pz*step->mom.x(), step->origin.y()+dz_over_pz*step->mom.y(), origin.z()); dir=step->mom; dir.SetMag(1.0); if (s){ *s=step->s+ds; } // flight time if (t){ double one_over_beta=sqrt(1.+mass*mass/(p*p)); *t = step->t+ds*one_over_beta/SPEED_OF_LIGHT; } return; } if(!step){ _DBG_<<"Could not find closest swim step!"<Ro; // OK, having said all of that, it turns out that the above // mechanism will tend to fail in regions of low or no // field because the value of Ro is very large. Thus, we need to // use a straight line projection in such cases. We also // want to use a straight line projection if the helical intersection // fails for some other reason. // // The algorthim is then to only try the helical calculation // for small (<10m) values of Ro and then do the straight line // if R is larger than that OR the helical calculation fails. // Try helical calculation if(Ro<1000.0){ double nx = norm.Dot(step->sdir); double ny = norm.Dot(step->tdir); double nz = norm.Dot(step->udir); double delta_z = step->mom.Dot(step->udir); double delta_phi = step->mom.Dot(step->tdir)/Ro; double dz_dphi = delta_z/delta_phi; double A = -Ro*nx/2.0; double B = Ro*ny + dz_dphi*nz; double C = norm.Dot(step->origin-origin); double sqroot=sqrt(B*B-4.0*A*C); double twoA=2.0*A; double phi_1 = (-B + sqroot)/(twoA); double phi_2 = (-B - sqroot)/(twoA); double phi = fabs(phi_1)origin + my_s*step->sdir + my_t*step->tdir + my_u*step->udir; dir = step->mom; dir.SetMag(1.0); if(s){ double delta_s = sqrt(my_t*my_t + my_u*my_u); *s = step->s + (phi>0 ? +delta_s:-delta_s); } // flight time if (t){ double delta_s = sqrt(my_t*my_t + my_u*my_u); double ds=(phi>0 ? +delta_s:-delta_s); double p=step->mom.Mag(); double beta=1./sqrt(1.+mass*mass/p/p); *t = step->t+ds/beta/SPEED_OF_LIGHT; } // Success. Go ahead and return return; } } // If we got here then we need to try a straight line calculation double alpha = norm.Dot(origin)/norm.Dot(step->mom); pos = alpha*step->mom; dir = step->mom; dir.SetMag(1.0); if(s){ double delta_s = alpha*step->mom.Mag(); *s = step->s + delta_s; } // flight time if (t){ double p=step->mom.Mag(); double beta=1./sqrt(1.+mass*mass/p/p); *t = step->t+alpha*p/beta/SPEED_OF_LIGHT; } } //--------------------------------- // InsertSteps //--------------------------------- int DReferenceTrajectory::InsertSteps(const swim_step_t *start_step, double delta_s, double step_size) { /// Insert additional steps into the reference trajectory starting /// at start_step and swimming for at least delta_s by step_size /// sized steps. Both delta_s and step_size are in centimeters. /// If the value of delta_s is negative then the particle's momentum /// and charge are reversed before swimming. This could be a problem /// if energy loss is implemented. if(!start_step)return -1; // We do this by creating another, temporary DReferenceTrajectory object // on the stack and swimming it. DVector3 pos = start_step->origin; DVector3 mom = start_step->mom; double my_q = q; int direction = +1; if(delta_s<0.0){ mom *= -1.0; my_q = -q; direction = -1; } // Here I allocate the steps using an auto_ptr so I don't have to mess with // deleting them at all of the possible exits. The problem with auto_ptr // is it can't handle arrays so it has to be wrapped in a struct. auto_ptr steps_aptr(new StepStruct); DReferenceTrajectory::swim_step_t *steps = steps_aptr->steps; DReferenceTrajectory rt(bfield , my_q , steps , 256); rt.SetStepSize(step_size); rt.Swim(pos, mom, my_q, fabs(delta_s)); if(rt.Nswim_steps==0)return 1; // Check that there is enough space to add these points if((Nswim_steps+rt.Nswim_steps)>max_swim_steps){ //_DBG_<<"Not enough swim steps available to add new ones! Max="<=istep_end; i--)swim_steps[i+steps_to_shift] = swim_steps[i]; // Copy the new steps into this object double s_0 = start_step->s; double itheta02_0 = start_step->itheta02; double itheta02s_0 = start_step->itheta02s; double itheta02s2_0 = start_step->itheta02s2; for(int i=0; i0 ? (istep_start+1+i):(istep_start+1+rt.Nswim_steps-1-i); swim_steps[index] = rt.swim_steps[i]; swim_steps[index].s = s_0 + (double)direction*swim_steps[index].s; swim_steps[index].itheta02 = itheta02_0 + (double)direction*swim_steps[index].itheta02; swim_steps[index].itheta02s = itheta02s_0 + (double)direction*swim_steps[index].itheta02s; swim_steps[index].itheta02s2 = itheta02s2_0 + (double)direction*swim_steps[index].itheta02s2; if(direction<0.0){ swim_steps[index].sdir *= -1.0; swim_steps[index].tdir *= -1.0; } } Nswim_steps += rt.Nswim_steps-steps_to_overwrite; // Note that the above procedure may leave us with "kinks" in the itheta0 // variables. It may be that we need to recalculate those for all of the // new points and the ones after them by making one more pass. I'm hoping // it is a realitively small correction though so we can skip it here. return 0; } //--------------------------------- // DistToRTwithTime //--------------------------------- double DReferenceTrajectory::DistToRTwithTime(DVector3 hit, double *s,double *t) const{ double dist=DistToRT(hit,s); if (s!=NULL && t!=NULL && last_swim_step!=NULL){ double p=last_swim_step->mom.Mag(); double one_over_beta=sqrt(1.+mass*mass/(p*p)); *t=last_swim_step->t+(*s-last_swim_step->s)*one_over_beta/SPEED_OF_LIGHT; } return dist; } //--------------------------------- // DistToRT //--------------------------------- double DReferenceTrajectory::DistToRT(DVector3 hit, double *s) const { last_swim_step=NULL; if(Nswim_steps<1)_DBG__; // First, find closest step to point swim_step_t *swim_step = swim_steps; swim_step_t *step=NULL; //double min_delta2 = 1.0E6; double old_delta2=10.e6,delta2=1.0e6; for(int i=0; iorigin - hit; delta2 = pos_diff.Mag2(); if (delta2>old_delta2) break; //if(delta2 < min_delta2){ //min_delta2 = delta2; step = swim_step; old_delta2=delta2; //} } if(step==NULL){ // It seems to occasionally occur that we have 1 swim step // and it's values are invalid. Supress warning messages // for these as they are "known" (even if not fully understood!) if(Nswim_steps>1){ _DBG_<<"\"hit\" passed to DistToRT(DVector3) out of range!"<s + (phi>0.0 ? ds:-ds); } this->last_phi = phi; this->last_swim_step = step; this->last_dz_dphi = dz_dphi; return sqrt(dist2); } //--------------------------------- // FindClosestSwimStep //--------------------------------- DReferenceTrajectory::swim_step_t* DReferenceTrajectory::FindClosestSwimStep(const DCoordinateSystem *wire, int *istep_ptr) const { /// Find the closest swim step to the given wire. The value of /// "L" should be the active wire length. The coordinate system /// defined by "wire" should have its origin at the center of /// the wire with the wire running in the direction of udir. if(istep_ptr)*istep_ptr=-1; if(Nswim_steps<1){ _DBG_<<"No swim steps! You must \"Swim\" the track before calling FindClosestSwimStep(...)"<L/2.0; // half-length of wire in cm int istep=-1; double dx, dy, dz; // w is a vector to the origin of the wire // u is a unit vector along the wire double wx, wy, wz; double ux, uy, uz; wx = wire->origin.X(); wy = wire->origin.Y(); wz = wire->origin.Z(); ux = wire->udir.X(); uy = wire->udir.Y(); uz = wire->udir.Z(); int i; for(i=0; iorigin - wire->origin; dx = swim_step->origin.X() - wx; dy = swim_step->origin.Y() - wy; dz = swim_step->origin.Z() - wz; // double u = wire->udir.Dot(pos_diff); double u = ux * dx + uy * dy + uz * dz; // Find distance perpendicular to wire // double delta2 = pos_diff.Mag2() - u*u; double delta2 = dx*dx + dy*dy + dz*dz - u*u; // If point is past end of wire, calculate distance // from wire's end by adding on distance along wire direction. if( fabs(u)>L_over_2){ // delta2 += pow(fabs(u)-L_over_2, 2.0); double u_minus_L_over_2=fabs(u)-L_over_2; delta2 += ( u_minus_L_over_2*u_minus_L_over_2 ); // printf("step %d\n",i); } if(debug_level>3)_DBG_<<"delta2="<3)_DBG_<<"found closest step at i="<origin-origin)); if (dist>old_dist) break; // Check if we're the closest step //if(dist < min_dist){ //min_dist = dist; step = swim_step; istep=i; //} old_dist=dist; // We should probably have a break condition here so we don't // waste time looking all the way to the end of the track after // we've passed the plane. } if(istep_ptr)*istep_ptr=istep; return step; } //--------------------------------- // FindPlaneCrossing //--------------------------------- DReferenceTrajectory::swim_step_t* DReferenceTrajectory::FindPlaneCrossing(const DVector3 &origin, DVector3 norm, int *istep_ptr) const { /// Find the closest swim step to the position where the track crosses /// the plane specified by origin /// and norm. origin should indicate any point in the plane and /// norm a vector normal to the plane. if(istep_ptr)*istep_ptr=-1; if(Nswim_steps<1){ _DBG_<<"No swim steps! You must \"Swim\" the track before calling FindPlaneCrossing(...)"<origin-origin)); double dist = norm.Dot(swim_step->origin-origin); // We've crossed the plane when the sign of dist changes if (dist*old_dist<0 && i>0) { if (fabs(dist)s>0) ? DistToRT(wire, step, s):std::numeric_limits::quiet_NaN(); } //--------------------------------- // DistToRTBruteForce //--------------------------------- double DReferenceTrajectory::DistToRTBruteForce(const DCoordinateSystem *wire, double *s) const { /// Find the closest distance to the given wire in cm. The value of /// "L" should be the active wire length (in cm). The coordinate system /// defined by "wire" should have its origin at the center of /// the wire with the wire running in the direction of udir. swim_step_t *step=FindClosestSwimStep(wire); return step ? DistToRTBruteForce(wire, step, s):std::numeric_limits::quiet_NaN(); } //------------------ // DistToRT //------------------ double DReferenceTrajectory::DistToRT(const DCoordinateSystem *wire, const swim_step_t *step, double *s) const { /// Calculate the distance of the given wire(in the lab /// reference frame) to the Reference Trajectory which the /// given swim step belongs to. This uses the momentum directions /// and positions of the swim step /// to define a curve and calculate the distance of the hit /// from it. The swim step should be the closest one to the wire. /// IMPORTANT: This approximates the helix locally by a parabola. /// This means the swim step should be fairly close /// to the wire so that this approximation is valid. If the /// reference trajectory from which the swim step came is too /// sparse, the results will not be nearly as good. // Interestingly enough, this is one of the harder things to figure // out in the tracking code which is why the explanations may be // a bit long. // The general idea is to define the helix in a coordinate system // in which the wire runs along the z-axis. The distance to the // wire is then defined just in the X/Y plane of this coord. system. // The distance is expressed as a function of the phi angle in the // natural coordinate system of the helix. This way, phi=0 corresponds // to the swim step point itself and the DOCA point should be // at a small phi angle. // // The minimum distance between the helical segment and the wire // will be a function of sin(phi), cos(phi) and phi. Approximating // sin(phi) by phi and cos(phi) by (1-phi^2) leaves a 4th order // polynomial in phi. Taking the derivative leaves a 3rd order // polynomial whose root is the phi corresponding to the // Distance Of Closest Approach(DOCA) point on the helix. Plugging // that value of phi back into the distance formula gives // us the minimum distance between the track and the wire. // First, we need to define the coordinate system in which the // wire runs along the z-axis. This is actually done already // in the CDC package for each wire once, at program start. // The directions of the axes are defined in wire->sdir, // wire->tdir, and wire->udir. // Next, define a point on the helical segment defined by the // swim step it the RT coordinate system. The directions of // the RT coordinate system are defined by step->xdir, step->ydir, // and step->zdir. The coordinates of a point on the helix // in this coordinate system are: // // x = Ro*(cos(phi) - 1) // y = Ro*sin(phi) // z = phi*(dz/dphi) // // where phi is the phi angle of the point in this coordinate system. // Now, a vector describing the helical point in the LAB coordinate // system is: // // h = x*xdir + y*ydir + z*zdir + pos // // where h,xdir,ydir,zdir and pos are all 3-vectors. // xdir,ydir,zdir are unit vectors defining the directions // of the RT coord. system axes in the lab coord. system. // pos is a vector defining the position of the swim step // in the lab coord.system // Now we just need to find the extent of "h" in the wire's // coordinate system (period . means dot product): // // s = (h-wpos).sdir // t = (h-wpos).tdir // u = (h-wpos).udir // // where wpos is the position of the center of the wire in // the lab coord. system and is given by wire->wpos. // At this point, the values of s,t, and u repesent a point // on the helix in the coord. system of the wire with the // wire in the "u" direction and positioned at the origin. // The distance(squared) from the wire to the point on the helix // is given by: // // d^2 = s^2 + t^2 // // where s and t are both functions of phi. // So, we'll define the values of "s" and "t" above as: // // s = A*x + B*y + C*z + D // t = E*x + F*y + G*z + H // // where A,B,C,D,E,F,G, and H are constants defined below // and x,y,z are all functions of phi defined above. // (period . means dot product) // // A = sdir.xdir // B = sdir.ydir // C = sdir.zdir // D = sdir.(pos-wpos) // // E = tdir.xdir // F = tdir.ydir // G = tdir.zdir // H = tdir.(pos-wpos) const DVector3 &xdir = step->sdir; const DVector3 &ydir = step->tdir; const DVector3 &zdir = step->udir; const DVector3 &sdir = wire->sdir; const DVector3 &tdir = wire->tdir; const DVector3 &udir = wire->udir; DVector3 pos_diff = step->origin - wire->origin; double A = sdir.Dot(xdir); double B = sdir.Dot(ydir); double C = sdir.Dot(zdir); double D = sdir.Dot(pos_diff); double E = tdir.Dot(xdir); double F = tdir.Dot(ydir); double G = tdir.Dot(zdir); double H = tdir.Dot(pos_diff); // OK, here is the dirty part. Using the approximations given above // to write the x and y functions in terms of phi^2 and phi (instead // of cos and sin) we put them into the equations for s and t above. // Then, inserting those into the equation for d^2 above that, we // get a very long equation in terms of the constants A,...H and // phi up to 4th order. Combining coefficients for similar powers // of phi yields an equation of the form: // // d^2 = Q*phi^4 + R*phi^3 + S*phi^2 + T*phi + U // // The dirty part is that it takes the better part of a sheet of // paper to work out the relations for Q,...U in terms of // A,...H, and Ro, dz/dphi. You can work it out yourself on // paper to verify that the equations below are correct. double Ro = step->Ro; double Ro2 = Ro*Ro; double delta_z = step->mom.Dot(step->udir); double delta_phi = step->mom.Dot(step->tdir)/Ro; double dz_dphi = delta_z/delta_phi; double dz_dphi2=dz_dphi*dz_dphi; double Ro_dz_dphi=Ro*dz_dphi; // double Q = pow(A*Ro/2.0, 2.0) + pow(E*Ro/2.0, 2.0); double Q=0.25*Ro2*(A*A+E*E); // double R = -(2.0*A*B*Ro2 + 2.0*A*C*Ro_dz_dphi + 2.0*E*F*Ro2 + 2.0*E*G*Ro_dz_dphi)/2.0; double R = -((A*B+E*F)*Ro2 + (A*C+E*G)*Ro_dz_dphi); // double S = pow(B*Ro, 2.0) + pow(C*dz_dphi,2.0) + 2.0*B*C*Ro_dz_dphi - 2.0*A*D*Ro/2.0 //+ pow(F*Ro, 2.0) + pow(G*dz_dphi,2.0) + 2.0*F*G*Ro_dz_dphi - 2.0*E*H*Ro/2.0; double S= (B*B+F*F)*Ro2+(C*C+G*G)*dz_dphi2+2.0*(B*C+F*G)*Ro_dz_dphi -(A*D+E*H)*Ro; // double T = 2.0*B*D*Ro + 2.0*C*D*dz_dphi + 2.0*F*H*Ro + 2.0*G*H*dz_dphi; double T = 2.0*((B*D+F*H)*Ro + (C*D+G*H)*dz_dphi); double U = D*D + H*H; // Aaarghh! my fingers hurt just from typing all of that! // // OK, now we differentiate the above equation for d^2 to get: // // d(d^2)/dphi = 4*Q*phi^3 + 3*R*phi^2 + 2*S*phi + T // // NOTE: don't confuse "R" with "Ro" in the above equations! // // Now we have to solve the 3rd order polynomial for the phi value of // the point of closest approach on the RT. This is a well documented // procedure. Essentially, when you have an equation of the form: // // x^3 + a2*x^2 + a1*x + a0 = 0; // // a change of variables is made such that w = x + a2/3 which leads // to a third order poly with no w^2 term: // // w^3 + 3.0*b*w + 2*c = 0 // // where: // b = a1/3 - (a2^2)/9 // c = a0/2 - a1*a2/6 + (a2^3)/27 // // The one real root of this is: // // w0 = q - p // // where: // q^3 = d - c // p^3 = d + c // d^2 = b^3 + c^2 (don't confuse with d^2 above!) // // For us this means that: // a2 = 3*R/(4*Q) // a1 = 2*S/(4*Q) // a0 = T/(4*Q) // // A potential problem could occur if Q is at or very close to zero. // This situation occurs when both A and E are zero. This would mean // that both sdir and tdir are perpendicular to xdir which means // xdir is in the same direction as udir (got that?). Physically, // this corresponds to the situation when both the momentum and // the magnetic field are perpendicular to the wire (though not // necessarily perpendicular to each other). This situation can't // really occur in the CDC detector where the chambers are well // contained in a region where the field is essentially along z as // are the wires. // // Just to be safe, we check that Q is greater than // some minimum before solving for phi. If it is too small, we fall // back to solving the quadratic equation for phi. double phi =0.0; if(fabs(Q)>1.0E-6){ /* double fourQ = 4.0*Q; double a2 = 3.0*R/fourQ; double a1 = 2.0*S/fourQ; double a0 = T/fourQ; */ double one_over_fourQ=0.25/Q; double a2=3.0*R*one_over_fourQ; double a1=2.0*S*one_over_fourQ; double a0=T*one_over_fourQ; double a2sq=a2*a2; /* double b = a1/3.0 - a2*a2/9.0; double c = a0/2.0 - a1*a2/6.0 + a2*a2*a2/27.0; */ double b=ONE_THIRD*(a1-ONE_THIRD*a2sq); double c=0.5*(a0-ONE_THIRD*a1*a2)+a2*a2sq/27.0; //double d = sqrt(pow(b, 3.0) + pow(c, 2.0)); // occasionally, this is zero. See below double d=sqrt(b*b*b+c*c); //double q = pow(d - c, ONE_THIRD); //double p = pow(d + c, ONE_THIRD); double q=cbrt(d-c); double p=cbrt(d+c); double w0 = q - p; //phi = w0 - a2/3.0; phi = w0 - ONE_THIRD*a2; } if(fabs(Q)<=1.0E-6 || !finite(phi)){ double a = 3.0*R; double b = 2.0*S; double c = 1.0*T; phi = (-b + sqrt(b*b - 4.0*a*c))/(2.0*a); } // The accuracy of this method is limited by how close the step is to the // actual minimum. If the value of phi is large then the step size is // not too close and we should add another couple of steps in the right // place in order to get a more accurate value. Note that while this will // increase the time it takes this round, presumably the fitter will be // calling this often for each wire and having a high density of points // near the wires will just make subsequent calls go quicker. This also // allows larger initial step sizes with the high density regions getting // filled in as needed leading to overall faster tracking. #if 0 if(finite(phi) && fabs(phi)>2.0E-4){ if(dist_to_rt_depth>=3){ _DBG_<<"3 or more recursive calls to DistToRT(). Something is wrong! bailing ..."<::quiet_NaN(); } double scale_step = 1.0; double s_range = 1.0*scale_step; double step_size = 0.02*scale_step; int err = InsertSteps(step, phi>0.0 ? +s_range:-s_range, step_size); // Add new steps near this step by swimming in the direction of phi if(!err){ step=FindClosestSwimStep(wire); // Find the new closest step if(!step)return std::numeric_limits::quiet_NaN(); dist_to_rt_depth++; double doca = DistToRT(wire, step, s); // re-call ourself with the new step dist_to_rt_depth--; return doca; }else{ if(err<0)return std::numeric_limits::quiet_NaN(); // If InsertSteps() returns an error > 0 then it indicates that it // was unable to add additional steps (perhaps because there // aren't enough spaces available). In that case, we just go ahead // and use the phi we have and make the best estimate possible. } } #endif // It is possible at this point that the value of phi corresponds to // a point past the end of the wire. We should check for this here and // recalculate, if necessary, the DOCA at the end of the wire. First, // calculate h (the vector defined way up above) and dot it into the // wire's u-direction to get the position of the DOCA point along the // wire. double x = -0.5*Ro*phi*phi; double y = Ro*phi; double z = dz_dphi*phi; DVector3 h = pos_diff + x*xdir + y*ydir + z*zdir; double u = h.Dot(udir); if(fabs(u) > wire->L/2.0){ // Looks like our DOCA point is past the end of the wire. // Find phi corresponding to the end of the wire. double L_over_2 = u>0.0 ? wire->L/2.0:-wire->L/2.0; double a = -0.5*Ro*udir.Dot(xdir); double b = Ro*udir.Dot(ydir) + dz_dphi*udir.Dot(zdir); double c = udir.Dot(pos_diff) - L_over_2; double twoa=2.0*a; double sqroot=sqrt(b*b-4.0*a*c); double phi1 = (-b + sqroot)/(twoa); double phi2 = (-b - sqroot)/(twoa); phi = fabs(phi1)last_dist_along_wire = u; // Sometimes the "d" used in solving the 3rd order polynmial above // can be nan due to the sqrt argument being negative. I'm not sure // exactly what this means (e.g. is this due to round-off, are there // no roots, ...) Also unclear is how to handle it. The only two choices // I can think of are : 1.) set phi to zero or 2.) return the nan // value. Option 1.) tries to keep the hit while option 2 ties to ignore // it. Both options should probably be studied at some point. For now // though, it looks (at least preliminarily) like this occurs slightly // less than 1% of the time on valid hits so we go ahead with option 2. // Use phi to calculate DOCA double d2 = U + phi*(T + phi*(S + phi*(R + phi*Q))); double d = sqrt(d2); // Calculate distance along track ("s") double dz = dz_dphi*phi; double Rodphi = Ro*phi; double ds = sqrt(dz*dz + Rodphi*Rodphi); if(s)*s=step->s + (phi>0.0 ? ds:-ds); if(debug_level>3){ _DBG_<<"distance to rt: "<<*s<<" from step at "<s<<" with ds="<sdir; const DVector3 &ydir = step->tdir; const DVector3 &zdir = step->udir; const DVector3 &sdir = wire->sdir; const DVector3 &tdir = wire->tdir; DVector3 pos_diff = step->origin - wire->origin; double Ro = step->Ro; double delta_z = step->mom.Dot(step->udir); double delta_phi = step->mom.Dot(step->tdir)/Ro; double dz_dphi = delta_z/delta_phi; // Brute force double min_d2 = 1.0E6; double phi=M_PI; for(int i=-2000; i<2000; i++){ double myphi=(double)i*0.000005; DVector3 d = Ro*(cos(myphi)-1.0)*xdir + Ro*sin(myphi)*ydir + dz_dphi*myphi*zdir + pos_diff; double d2 = pow(d.Dot(sdir),2.0) + pow(d.Dot(tdir),2.0); if(d2last_phi = myphi; } } double d2 = min_d2; double d = sqrt(d2); this->last_phi = phi; this->last_swim_step = step; this->last_dz_dphi = dz_dphi; // Calculate distance along track ("s") double dz = dz_dphi*phi; double Rodphi = Ro*phi; double ds = sqrt(dz*dz + Rodphi*Rodphi); if(s)*s=step->s + (phi>0.0 ? ds:-ds); return d; } //------------------ // Straw_dx //------------------ double DReferenceTrajectory::Straw_dx(const DCoordinateSystem *wire, double radius) { /// Find the distance traveled within the specified radius of the /// specified wire. This will give the "dx" component of a dE/dx /// measurement for cylindrical geometry as we have with straw tubes. /// /// At this point, the estimate is done using a simple linear /// extrapolation from the DOCA point in the direction of the momentum /// to the 2 points at which it itersects the given radius. Segments /// which extend past the end of the wire will be clipped to the end /// of the wire before calculating the total dx. // First, find the DOCA point for this wire double s; double doca = DistToRT(wire, &s); // If doca is outside of the given radius, then we're done if(doca>=radius)return 0.0; // Get the location and momentum direction of the DOCA point DVector3 pos, momdir; GetLastDOCAPoint(pos, momdir); if(momdir.Mag()!=0.0)momdir.SetMag(1.0); // Get wire direction const DVector3 &udir = wire->udir; // Calculate vectors used to form quadratic equation for "alpha" // the distance along the mometum direction from the DOCA point // to the intersection with a cylinder of the given radius. DVector3 A = udir.Cross(pos-wire->origin); DVector3 B = udir.Cross(momdir); // If the magnitude of B is zero at this point, it means the momentum // direction is parallel to the wire. In this case, this method will // not work. Return NaN. if(B.Mag()<1.0E-10)return std::numeric_limits::quiet_NaN(); double a = B.Mag(); double b = A.Dot(B); double c = A.Mag() - radius; double d = sqrt(b*b - 4.0*a*c); // The 2 roots should correspond to the 2 intersection points. double alpha1 = (-b + d)/(2.0*a); double alpha2 = (-b - d)/(2.0*a); DVector3 int1 = pos + alpha1*momdir; DVector3 int2 = pos + alpha2*momdir; // Check if point1 is past the end of the wire double q = udir.Dot(int1 - wire->origin); if(fabs(q) > wire->L/2.0){ double gamma = udir.Dot(wire->origin - pos) + (q>0.0 ? +1.0:-1.0)*wire->L/2.0; gamma /= momdir.Dot(udir); int1 = pos + gamma*momdir; } // Check if point2 is past the end of the wire q = udir.Dot(int2 - wire->origin); if(fabs(q) > wire->L/2.0){ double gamma = udir.Dot(wire->origin - pos) + (q>0.0 ? +1.0:-1.0)*wire->L/2.0; gamma /= momdir.Dot(udir); int2 = pos + gamma*momdir; } // Calculate distance DVector3 delta = int1 - int2; return delta.Mag(); } //------------------ // GetLastDOCAPoint //------------------ void DReferenceTrajectory::GetLastDOCAPoint(DVector3 &pos, DVector3 &mom) const { /// Use values saved by the last call to one of the DistToRT functions /// to calculate the 3-D DOCA position in lab coordinates and momentum /// in GeV/c. if(last_swim_step==NULL){ if(Nswim_steps>0){ last_swim_step = &swim_steps[0]; last_phi = 0.0; }else{ pos.SetXYZ(NaN,NaN,NaN); mom.SetXYZ(NaN,NaN,NaN); return; } } // If last_phi is not finite, set it to 0 as a last resort if(!finite(last_phi))last_phi = 0.0; const DVector3 &xdir = last_swim_step->sdir; const DVector3 &ydir = last_swim_step->tdir; const DVector3 &zdir = last_swim_step->udir; double x = -(last_swim_step->Ro/2.0)*last_phi*last_phi; double y = last_swim_step->Ro*last_phi; double z = last_dz_dphi*last_phi; pos = last_swim_step->origin + x*xdir + y*ydir + z*zdir; mom = last_swim_step->mom; mom.Rotate(-last_phi, zdir); } //------------------ // GetLastDOCAPoint //------------------ DVector3 DReferenceTrajectory::GetLastDOCAPoint(void) const { /// Use values saved by the last call to one of the DistToRT functions /// to calculate the 3-D DOCA position in lab coordinates. This is /// mainly intended for debugging. if(last_swim_step==NULL){ if(Nswim_steps>0){ last_swim_step = &swim_steps[0]; last_phi = 0.0; }else{ return DVector3(NaN,NaN,NaN); } } const DVector3 &xdir = last_swim_step->sdir; const DVector3 &ydir = last_swim_step->tdir; const DVector3 &zdir = last_swim_step->udir; double Ro = last_swim_step->Ro; double delta_z = last_swim_step->mom.Dot(zdir); double delta_phi = last_swim_step->mom.Dot(ydir)/Ro; double dz_dphi = delta_z/delta_phi; double x = -(Ro/2.0)*last_phi*last_phi; double y = Ro*last_phi; double z = dz_dphi*last_phi; return last_swim_step->origin + x*xdir + y*ydir + z*zdir; } //------------------ // dPdx //------------------ double DReferenceTrajectory::dPdx_from_A_Z_rho(double ptot, double A, double Z, double density) const { double I = (Z*12.0 + 7.0)*1.0E-9; // From Leo 2nd ed. pg 25. if (Z>=13) I=(9.76*Z+58.8*pow(Z,-0.19))*1.0e-9; double rhoZ_overA=density*Z/A; double KrhoZ_overA = 0.1535e-3*rhoZ_overA; return dPdx(ptot, KrhoZ_overA,rhoZ_overA,log(I)); } //------------------ // dPdx //------------------ double DReferenceTrajectory::dPdx(double ptot, double KrhoZ_overA, double rhoZ_overA,double LogI) const { /// Calculate the momentum loss per unit distance traversed of the material with /// the given A, Z, and density. Value returned is in GeV/c per cm /// This follows the July 2008 PDG section 27.2 ppg 268-270. if(mass==0.0)return 0.0; // no ionization losses for neutrals double gammabeta = ptot/mass; double gammabeta2=gammabeta*gammabeta; double gamma = sqrt(gammabeta2+1); double beta = gammabeta/gamma; double beta2=beta*beta; double me = 0.511E-3; double m_ratio=me/mass; double two_me_gammabeta2=2.*me*gammabeta2; double Tmax = two_me_gammabeta2/(1.0+2.0*gamma*m_ratio+m_ratio*m_ratio); //double K = 0.307075E-3; // GeV gm^-1 cm^2 // Density effect double delta=0.; double X=log10(gammabeta); double X0,X1; double Cbar=2.*(LogI-log(28.816e-9*sqrt(rhoZ_overA)))+1.; if (rhoZ_overA>0.01){ // not a gas if (LogI<-1.6118){ // I<100 if (Cbar<=3.681) X0=0.2; else X0=0.326*Cbar-1.; X1=2.; } else{ if (Cbar<=5.215) X0=0.2; else X0=0.326*Cbar-1.5; X1=3.; } } else { // gases X1=4.; if (Cbar<=9.5) X0=1.6; else if (Cbar>9.5 && Cbar<=10.) X0=1.7; else if (Cbar>10 && Cbar<=10.5) X0=1.8; else if (Cbar>10.5 && Cbar<=11.) X0=1.9; else if (Cbar>11.0 && Cbar<=12.25) X0=2.; else if (Cbar>12.25 && Cbar<=13.804){ X0=2.; X1=5.; } else { X0=0.326*Cbar-2.5; X1=5.; } } if (X>=X0 && X=X1) delta= 4.606*X-Cbar; double dEdx = KrhoZ_overA/beta2*(log(two_me_gammabeta2*Tmax) -2.*LogI - 2.0*beta2 -delta); double dP_dx = dEdx/beta; double g = 0.350/sqrt(-log(0.06)); dP_dx *= 1.0 + exp(-pow(ptot/g,2.0)); // empirical for really low momentum particles if(ploss_direction==kBackward)dP_dx = -dP_dx; return dP_dx; } //------------------ // Dump //------------------ void DReferenceTrajectory::Dump(double zmin, double zmax) { swim_step_t *step = swim_steps; for(int i=0; i > item; double x = step->origin.X(); double y = step->origin.Y(); double z = step->origin.Z(); if(zzmax)continue; double px = step->mom.X(); double py = step->mom.Y(); double pz = step->mom.Z(); cout<Ro<<","<s<<","<t<<") "; cout<