// DHelicalFit: class containing helix-based fitting routines assuming
// uniform magnetic field
//
///
Two sets of helix-based fitting routines are contained in this class:
///
/// Quick Fit:
/// Do a very fast, linear-regression type fit on a set of hits.
///
/// This class allows one to define a set of 2D or 3D points
/// which can then be fit to a circle (2D) or a helical track (3D)
/// via the FitCircle() and FitTrack() methods. This is written
/// in a generic way such that either CDC or FDC data or any
/// combination of the two can be used.
///
/// The QuickFit, as the name implies, is intended to be very fast.
/// it will NOT produce a terribly accurate result.
///
/// This will hopefully be useful in a couple of places:
///
/// -# When trying to find clusters, it can be used to help
/// reject outlying hits.
/// -# In the Level-3 or filtering application, it can be used
/// to quickly identify whether a cluster has a reasonable
/// chance of becoming a "track"
/// -# To find first-guess parameters for tracks which can
/// be used as the starting point for real track fitting.
///
///
/// To use this class, simply instantiate it and then repeatedly
/// call one of the AddHit methods to add points you want to
/// fit. When all of the points have been added, invoke either
/// the FitCircle() (2D) or FitTrack() (3D) method to perform the fit.
/// Note that since the fits are done using a linear regression
/// style and other "one-pass" calculations, there is no iteration.
/// It also assumes the same error for each point.
///
/// The fit results are stored in public members of the class.
/// The x0,y0 members represent the coordinates of the center of
/// the 2D circle in whatever units the hits had when added. The
/// chisq value is just the sum of the squares of the differences
/// between each hit's distance from x0,y0 and \f$ r_0=\sqrt{x_0^2 + y_0^2} \f$.
/// p_trans will have the transverse component of the particle's
/// momentum.
///
/// A few methods are available to remove hits which do not
/// match certain criteria. These include PruneHits() and
/// PruneWorst() (both of with call PruneHit()). See the notes
/// in each for more info.
///
/// 2) Riemann Helical Fit
///
/// This approach also a has a circle fit and an extension to a helix.
/// The circle fit maps points on a circle to a Riemann surface such that the
/// task of finding the radius and center of a circle for the helix projected
/// onto a plane perpendicular to the beam line becomes the task of obtaining
/// the normal vector for a plane slicing this surface. The (0,0) point does
/// not have to be included for the fit to work, but it can be included as a
/// fuzzy fake point to better constrain pT. The extension to a helix for the
/// forward direction requires a linear regression relating the arc length
/// between measurements and z, from which the dip angle can be determined.
#ifndef _DHELICAL_FIT_H_
#define _DHELICAL_FIT_H_
#include
using namespace std;
#include
#include
#include
#include "FDC/DFDCPseudo.h"
#include "JANA/jerror.h"
#include
#ifndef atan2f
#define atan2f(x,y) atan2((double)x,(double)y)
#endif
class DMagneticFieldMap;
typedef struct{
float x,y,z; ///< point in lab coordinates
double covx,covy,covxy; ///< error info for x and y coordinates
float phi_circle; ///< phi angle relative to axis of helix
float chisq; ///< chi-sq contribution of this hit
}DHFHit_t;
class DHelicalFit{
public:
DHelicalFit(void);
DHelicalFit(const DHelicalFit &fit);
DHelicalFit& operator=(const DHelicalFit& fit);
void Copy(const DHelicalFit &fit);
~DHelicalFit();
jerror_t AddHit(float r, float phi, float z);
jerror_t AddHitXYZ(float x, float y, float z);
jerror_t AddHitXYZ(float x,float y, float z,float covx,float covy,
float covxy);
jerror_t AddHit(const DFDCPseudo *fdchit);
jerror_t PruneHit(int idx);
jerror_t Clear(void);
jerror_t FitCircle(void);
double ChisqCircle(void);
jerror_t FitCircleRiemann(void);
jerror_t FitCircleRiemann(float BeamRMS);
jerror_t FitCircleRiemannCorrected(float rc);
jerror_t FitLineRiemann(void);
jerror_t GetChargeRiemann(void);
jerror_t GetChargeRiemann(float rc);
jerror_t FitCircleStraightTrack();
void SearchPtrans(double ptrans_max=9.0, double ptrans_step=0.5);
void QuickPtrans(void);
jerror_t GuessChargeFromCircleFit(void);
jerror_t FitTrack(void);
jerror_t FitTrackRiemann(float rc);
jerror_t FitCircleAndLineRiemann(float rc);
jerror_t FitTrack_FixedZvertex(float z_vertex);
jerror_t FitLine_FixedZvertex(float z_vertex);
jerror_t Fill_phi_circle(vector hits, float x0, float y0);
inline const vector GetHits() const {return hits;}
inline int GetNhits() const {return hits.size();}
inline const DMagneticFieldMap * GetMagneticFieldMap() const {return bfield;}
inline float GetBzAvg() const {return Bz_avg;}
inline float GetZMean() const {return z_mean;}
inline float GetPhiMean() const {return phi_mean;}
jerror_t PrintChiSqVector(void) const;
jerror_t Print(void) const;
jerror_t Dump(void) const;
inline void SetMagneticFieldMap(const DMagneticFieldMap *map){bfield=map;}
// for Riemann plane
void GetPlaneParameters(double &c,DVector3 &n){
c=c_origin;
n.SetXYZ(N[0],N[1],N[2]);
};
enum ChiSqSourceType_t{
NOFIT,
CIRCLE,
TRACK
};
float x0,y0,r0;
float q;
float p, p_trans;
float phi, theta, tanl;
float z_vertex;
float chisq;
int ndof;
float dzdphi;
ChiSqSourceType_t chisq_source;
DVector3 normal;
double c_origin; // distance to "origin" for Riemann circle fit
protected:
vector hits;
const DMagneticFieldMap *bfield; ///< pointer to magnetic field map
float Bz_avg;
float z_mean, phi_mean;
jerror_t FillTrackParams(void);
private:
// Covariance matrices
DMatrix *CovR_;
DMatrix *CovRPhi_;
// Riemann circle fit parameters
double N[3];
double xavg[3],var_avg;
};
#endif //_DHELICAL_FIT_H_