
The JANA calibrations and conditions database API

David Lawrence
12000 Jefferson Ave. Suite 8; Newport News, VA 23601; USA

E-mail: davidl@jlab.org

Abstract. Calibrations and conditions databases can be accessed from within the JANA
Event Processing framework through the API defined in its JCalibration base class. The API
is designed to support everything from databases, to web services to flat files for the backend.
A Web Service backend using the gSOAP toolkit has been implemented which is particularly
interesting since it addresses many modern cybersecurity issues including support for SSL. The
API allows constants to be retrieved through a single line of C++ code with most of the context,
including the transport mechanism, being implied by the run currently being analyzed and the
environment relieving developers from implementing such details.

1. Introduction
The JANA[1] event processing framework is being developed primarily for the GlueX[2]
experiment at Jefferson Lab in Newport News, Virginia, USA. JANA is a C++, multi-threaded
event processing framework. One of the important features it provides is a common mechanism
that can be used by all processing threads to access the Calibrations and Conditions Database
(CCDB). Though the framework is motivated by the GlueX experiment, it is designed to be of
general use. This generalization has an advantage in that it provides a well defined application
programming interface (API) (see figure 1) which allows quicker startup of code development as
described in the following section.

Figure 1. The JCalibration class implements the API and serves as a well-defined boundary
between the reconstruction code and the database itself.



2. Providing a Framework for Development
In the earlier stages of development of the simulation and reconstruction source code, it is
important to provide a framework that can be used by collaborators to begin development
quickly, yet allow the code to be useful throughout the lifetime of the experiment. Naturally,
not all code developed early on will survive through the whole experiment. However, common
experience shows there are always a few pieces of code that were thought to be temporary
when first written, but become an integral part of the final package. Developing against a well
defined API helps ensure a level of modularity that will ultimately make the legacy code more
maintainable.

Developing all features of the framework prior to starting work on the reconstruction code is
not practical. In the case of the CCDB, for example, one does not develop the entire database
system first before beginning to develop the simulation or reconstruction software. However, one
can define an API that would be used by the bulk of simulation/reconstruction software and a
simple back end that would then allow development to begin with relatively little effort. The
full CCDB design is then deferred until later or done in parallel to the development of the other
software pieces. In this spirit, JANA implements a trivial CCDB backend based on ASCII files
that can be used for initial development. The API is implemented through the JCalibration base
class which all backend implementations must inherit from. The trivial backend is implemented
in the JCalibrationFile class and can be used in lieu of a full database while supporting the API
that will be used to interface with the eventual CCDB.

2.1. Generator Classes and Discovery Mechanism
Supporting a simple backend for development and later a full featured database will lead to
a transition period during which it is desirable to have both methods accessible in the same
executable. Supporting multiple backends simultaneously is done easily through a traditional
object oriented factory mechanism. To supply a backend, one needs to supply 2 classes: 1.) the
class implementing the backend itself (e.g. JCalibrationMySQL), and 2.) a generator class (e.g.
JCalibrationGeneratorMySQL). The generator class is used to:

(i) Determine which backend is appropriate for a specified CCDB
(ii) Create an object of the appropriate JCalibration-based class

Figure 2 lists the methods that must be supplied by a generator class (i.e. one inheriting from
JCalibrationGenerator). Two of the three methods (Description() and MakeJCalibration()) are
trivial. The CheckOpenable() method returns a floating point value between 0 and 1 indicating
the probability1

that it can open and read from the specified url, run, and context. The url is a free-form
string indicating the protocol and location of the CCDB data. For example, this could have a
form:

file:///group/halld/calib

or

mysql://halld user@halld db.jlab.org

1 Here, probability is used as a deferred programming device. It allows one to implement e.g. an ASCII format
with a suffix “.txt” without implementing strict versioning or exclusion of alternate ASCII formats using the same
suffix. It allows one to minimize the time/manpower it takes to get a product to market, but flagging it as such
with a low “probability”. Future, alternative implementations can easily coexist with the legacy one, provided
they implement more sophisticated format checking and return a higher “probability” accordingly.



Figure 2. Purely virtual methods that must be supplied when inheriting from the
JCalibrationGenerator class.

The run value is the run number and is assumed to be the primary index of the CCDB.
The context parameter is a free-form string that can be used to convey additional information
about the specific constant set desired. For example, the string “datetime=2009-05-14-6-
44;tag=davetest” could be used to request the constants tagged “davetest” that would have
been returned had the query been made on May 14th, 2009 at 6:44AM. The exact format of the
context string and what settings it supports (if any) is determined by the backend.

3. A Simple API
The JANA CCDB API is designed to provide as simple an interface as possible to the
simulation/reconstruction code author. Most information about the specifics of the particular
data set and its location are hidden in the sense that they need not be explicitly provided
whenever a particular item is retrieved. The underlying principle being that the location,
protocol , and particular constant set desired is the same for all packages processing that event.
The implied context (location, protocol, run number, ...) in which the request for an item2 is
made is kept in a common location, the JCalibration object.

Figure 3 shows the core methods of the API. These are templates so that the exact data
type is determined by the caller. Types are converted to the specified type using the ANSI
stringstream class. Conversion from strings is assumed to be necessary at some point since most
common database systems transport data as strings to avoid byte-ordering or word length issues.
Therefore, if a reference to a container of type vector < double > is passed, then the values will
be retrieved from the backend as strings and the stringstream class used to convert them to type
double as they are copied into the container.

Not shown in figure 3 is another set of four Get() methods that are identical to the ones
shown except references to pointers to const containers are used. These work in a similar way
except they indicate that the JCalibration class should create a container of the specified type
and only return a const pointer to it. Then, for subsequent requests for the same constants
(e.g. by other threads) the same const pointer will be returned such that only one copy of the
constants will be kept in memory at a time. The user-supplied-container versions would be
used when the constants are only needed temporarily (e.g. local scope) or the user wishes to
manipulate them (e.g. convert units from cm to mm). The framework owned container versions
would be used for most all other cases.

In JANA reconstruction algorithms are implemented in “factory” classes. A factory class
implements a set of callback methods that the framework calls during the course of event
processing. One of these is the brun() method which is called whenever a run number change
is sensed. This is primarily used to indicate to a factory that the calibration may have changed
since the run number is used as the primary index. Figure 4 shows an example of how the API
is used to retrieve a set of 3 parameters, indexed by name. In this example, the values are kept
as local data members in the factory class to be used by the specific algorithm it implements.
The first parameter is called the namepath. This free-form string is passed to the backend which
must then parse it to identify the specific item that is desired. The suggested convention is

2 Here, “item” means either a 1-D array or a 2-D table.



Figure 3. Templated methods that form the core of the API as seen by the user code. Constants
may be retrieved as 1-D arrays or 2-D tables and may be indexed either by name (string) or
position (number). The GetListOfNamepaths() method provides a minimal discovery mechanism
allowing the list of available namepaths to be obtained from the backend.

to use a hierarchical type syntax with the first part indicating the detector system to which
the item belongs. This allows more complicated systems to implement a “deeper” hierarchy if
needed.

Notice that in figure 4 the call is actually made to the GetCalib() method of the JANA
framework’s JEventLoop class (passed in as an argument to the brun() and evnt() methods).
This is so the framework can identify the specific JCalibration object which it should route
the call to. Since a multi-threaded program may be processing events from several runs
simultaneously, several JCalibration objects may exist.

Figure 4. Example showing how to obtain constants indexed by name using an STL map
container. In this example, the constants are retrieved(see text) whenever the run number
changes and kept in local data members of the algorithm object.

Figure 5 gives an example of how to access constant indexed by position. This example
shows how an explicit error check may be made to verify that the correct number of values
was obtained from the CCDB. The API itself does not supply mechanisms to check the number



or type of values supplied by the CCDB. Leaving this to the caller maintains a lower level of
simplicity for the API which in turn, provides a higher level of flexibility in the CCDB design.

Figure 5. Example showing how to obtain constants indexed by position using an STL vector
container. In this example, the constants are retrieved(see text) whenever the run number
changes and kept in local data members of the algorithm object. Note that one can call the
GetCalib() method from within evnt() as well, though the overhead of accessing a database on
every event would make this an undesirable choice.

4. Database Backends
Figure 6 shows the 3 API methods that must be supplied in order to create a CCDB backend.
Owing to how most databases transport using strings, only string types are used. Values in the
CCDB backend are expected to be indexed by either name (e.g. figure 4) or position (e.g. figure
5). The backend is responsible for providing the indexes as strings so if only position indexing is
available, the strings “0”, “1”, “2”, ... will be used guaranteeing that order will be maintained
with the map container3.

Figure 6. API for the Calibrations and Conditions Database backend. Backends need only
to supply these 3 methods in the JCalibration-derived base class. Strings are used since most
databases communicate using strings to avoid byte ordering and word length issues.

4.1. SOAP-based Web Service
The SOAP[3] standard is a commonly used mechanism by which data objects can be transported
across the network, allowing one to develop distributed applications. It is a service oriented
architecture (SOA) where a server publishes its methods and the definitions of the data
objects used to pass information in and out of them in the form of a downloadable XML
file (WSDL). The protocol works over HTTP (port 80) or HTTPS (port 443) with the latter

3 STL map containers will order the entries by hashing the key. This leads to alphabetical order for words, but
numerical ordering for numbers.



providing an encrypted connection through a secure socket layer (SSL). SOAP is attractive as
a communication mechanism because it works over HTTP(S) which bypasses the need to open
additional ports in a firewall for remote access to a database.

JANA comes with a working example of a JCalibration backend that uses SOAP to obtain
calibration constants over the network. The example uses the C++ SOAP implementation,
gSOAP[4]. The gSOAP package fully supports SSL using the openssl[5] library. Thus, it
is able to communicate using an encrypted connection with both server-side and client-side
authentication via certificates. This is useful in restricting access to the CCDB to collaboration
members while still allowing remote access from anywhere on the internet.

Because the communication is done as a web service, the actual database communication may
be done via any programming language (e.g. Java, python, ...). A C++ implementation using
gSOAP that can be run via CGI is included with the JANA source code. With this example, one
can easily adapt any backend as a web service thereby allowing development of the full CCDB
on a local network before publishing it as a Web Service.

5. Summary
The JANA Calibrations and Conditions Database API provides a simple interface for accessing
constants. The well-defined API allows new projects to defer development or implementation of
the full database and immediately start on development of simulation and reconstruction code
without the need to rewrite it later once the full database is in place.

Working examples of using the C++ gSOAP package to access constants through an SSL
encrypted connection are included in the JANA source code.

Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-
AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce this manuscript for U.S. Government purposes.

References
[1] D Lawrence. Multi-threaded event reconstruction with jana. Journal of Physics: Conference Series,

119(4):042018 (6pp), 2008.
[2] Matt Shepherd. Gluex (in hall d at the upgraded jefferson lab). CIPANP2009, 2009.
[3] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Nielsen, Satish

Thatte, and Dave Winer. Simple object access protocol (soap) 1.1. Technical Report NOTE-SOAP-
20000508, W3.org, http://www.w3.org/TR/2000/NOTE-SOAP-20000508, July 2003.

[4] CCGrid2002, editor. The gSOAP Toolkit for Web Services and Peer-To-Peer Computing Networks. 2nd IEEE
International Symposium on Cluster Computing and the Grid, May 2002.

[5] http://www.openssl.org/.


