* * $Id$ * * $Log$ * Revision 1.4 2005/08/25 12:22:05 davidl * Commented out lines 113-115 since they also can never be reached, leading to compiler warnings from solaris compiler * * Revision 1.3 2005/08/05 18:46:22 davidl * Commented out lines 97-109 since they can never be reached. This was indicated by the SunOS compiler * * Revision 1.2 2001/11/12 23:02:44 brash * Found a small bug in my original modification to this routine, which * exists only here for the alpha BTW. The bug was that I was checking for small * values of rotation matrix elements, to avoid fpe's, and I should have been * checking for small ABSOLUTE values, since of course the matrix elements can * be negative. * * Revision 1.1 2001/10/04 06:20:57 brash * This routine is part of the cern library, but suffered arithmetic errors on the alpha. I changed this file to trap these situations. EJB * * Revision 1.1.1.1 1995/10/24 10:20:56 cernlib * Geant * * #include "geant321/pilot.h" *CMZ : 3.21/02 02/07/94 18.24.47 by S.Giani *-- Author : SUBROUTINE GSROTM(NMAT,THETA1,PHI1,THETA2,PHI2,THETA3,PHI3) C. C. ****************************************************************** C. * * C. * STORE ROTATION MATRICES * C. * * C. * ==>Called by : * C. * Author R.Brun ********* * C. * * C. ****************************************************************** C. #include "geant321/gcbank.inc" #include "geant321/gcunit.inc" #include "geant321/gconsp.inc" #include "geant321/gcnum.inc" DIMENSION ANGLES(6),IP(3) SAVE SINMIN #if defined(CERNLIB_SINGLE) DIMENSION ROTMAT(9) PARAMETER (ONE=1.0,ZERO=0.0) DATA SINMIN/1.00E-5/ #endif #if !defined(CERNLIB_SINGLE) DOUBLE PRECISION ROTMAT(9),ONE,ZERO DOUBLE PRECISION PROD1,PROD2,PROD3,HMOD,SINMIN PARAMETER (ONE=1.D0,ZERO=0.D0) DATA SINMIN/1.00D-5/ #endif C. C. ------------------------------------------------------------------ C. IF(NMAT.LE.0)GO TO 999 IF(JROTM.LE.0)CALL MZBOOK(IXCONS,JROTM,JROTM,1,'ROTM',NROTM,NROTM, +0,3,0) IF(NMAT.GT.IQ(JROTM-2)) THEN NPUSH=NMAT-IQ(JROTM-2)+50 CALL MZPUSH(IXCONS,JROTM,NPUSH,0,'I') NROTM=IQ(JROTM-2) JR1=0 ELSE JR1=LQ(JROTM-NMAT) IF(JR1.GT.0)THEN WRITE(CHMAIL,1000) CALL GMAIL(1,0) CALL GPROTM(NMAT) CALL MZDROP(IXCONS,LQ(JROTM-NMAT),' ') ENDIF ENDIF CALL MZBOOK(IXCONS,JR,JROTM,-NMAT,'ROTM',0,0,16,3,0) C Q(JR + 11) = THETA1 Q(JR + 12) = PHI1 Q(JR + 13) = THETA2 Q(JR + 14) = PHI2 Q(JR + 15) = THETA3 Q(JR + 16) = PHI3 C DO 10 N = 1,3 THERAD = Q(JR+ 9+2*N)*DEGRAD PHIRAD = Q(JR+10+2*N)*DEGRAD SINTHE = SIN(THERAD) Q(JR+3*N-2) = SINTHE * COS(PHIRAD) Q(JR+3*N-1) = SINTHE * SIN(PHIRAD) Q(JR+3*N ) = COS(THERAD) if(abs(Q(JR+3*N-2)).le.1.0E-10) Q(JR+3*N-2)=0.0 if(abs(Q(JR+3*N-1)).le.1.0E-10) Q(JR+3*N-1)=0.0 if(abs(Q(JR+3*N )).le.1.0E-10) Q(JR+3*N )=0.0 CALL VUNIT (Q(JR+3*N-2),Q(JR+3*N-2),3) 10 CONTINUE C. C.--- Test orthonormality DO 20 J=1,9 ROTMAT(J)=Q(JR+J) 20 CONTINUE goto 110 c PROD2=ZERO C. C. X - Y c PROD1= c +ROTMAT(1)*ROTMAT(4)+ROTMAT(2)*ROTMAT(5)+ROTMAT(3)*ROTMAT(6) c IF(ABS(PROD1).GT.SINMIN) GO TO 30 C. C. X - Z c PROD2= c +ROTMAT(1)*ROTMAT(7)+ROTMAT(2)*ROTMAT(8)+ROTMAT(3)*ROTMAT(9) c IF(ABS(PROD2).GT.SINMIN) GO TO 30 C. C. Y - Z C PROD3= C +ROTMAT(7)*ROTMAT(4)+ROTMAT(8)*ROTMAT(5)+ROTMAT(9)*ROTMAT(6) C IF(ABS(PROD3).LE.SINMIN) GO TO 110 30 CONTINUE C. C.--- Orthonormalization needed C. C. Assume X correct HMOD=ZERO DO 40 J=4,6 ROTMAT(J)=ROTMAT(J)-ROTMAT(J-3)*PROD1 HMOD=HMOD+ROTMAT(J)*ROTMAT(J) 40 CONTINUE HMOD=ONE/SQRT(HMOD) DO 50 J=4,6 ROTMAT(J)=ROTMAT(J)*HMOD 50 CONTINUE C. C. Y done, do Z C. * IF(PROD2.EQ.ZERO) THEN * PROD2= * + ROTMAT(1)*ROTMAT(7)+ROTMAT(2)*ROTMAT(8)+ROTMAT(3)*ROTMAT(9) * ENDIF * PROD3= * +ROTMAT(4)*ROTMAT(7)+ROTMAT(5)*ROTMAT(8)+ROTMAT(6)*ROTMAT(9) * HMOD = ZERO * DO 60 J=1,3 * ROTMAT(J+6)=ROTMAT(J+6)-ROTMAT(J+3)*PROD3-ROTMAT(J)*PROD2 * HMOD = HMOD+ROTMAT(J)*ROTMAT(J) * 60 CONTINUE * == AV == ROTMAT(7) = ROTMAT(2)*ROTMAT(6) - ROTMAT(3)*ROTMAT(5) ROTMAT(8) = ROTMAT(3)*ROTMAT(4) - ROTMAT(1)*ROTMAT(6) ROTMAT(9) = ROTMAT(1)*ROTMAT(5) - ROTMAT(2)*ROTMAT(4) HMOD = ZERO + ROTMAT(7)*ROTMAT(7) + ROTMAT(8)*ROTMAT(8) & + ROTMAT(9)*ROTMAT(9) * == AV == C C EJB - Added the following traps for HMOD, to solve arithmetic C problems on the alpha. C if(hmod.lt.0) then write(*,*)'WARNING !!!!!!!! HMOD < 0, taking abs. value' hmod=abs(hmod) endif if(hmod.eq.0) then write(*,*)'WARNING !!!!!!!! HMOD = 0, making it 1.0' hmod=1.0 endif C C HMOD = ONE/SQRT(HMOD) DO 70 J=7,9 ROTMAT(J) = ROTMAT(J)*HMOD 70 CONTINUE C. C. Put back the matrix in place DO 80 J=1,9 Q(JR+J)=ROTMAT(J) 80 CONTINUE C. C. Now recompute the angles DO 90 J=1,3 ANGLES(J*2-1) = ACOS(MAX(-ONE,MIN(ONE,ROTMAT(J*3))))*RADDEG ANGLES(J*2) = ZERO IF(ROTMAT(J*3-1).NE.ZERO) THEN ANGLES(J*2) = ATAN2(ROTMAT(J*3-1),ROTMAT(J*3-2))*RADDEG IF(ANGLES(2*J).LT.0.0) ANGLES(2*J) = ANGLES(2*J)+360.0 ENDIF 90 CONTINUE WRITE(CHMAIL,2000) NMAT CALL GMAIL(1,2) WRITE(CHMAIL,2001) (Q(JR+10+J),J=1,6) CALL GMAIL(0,0) WRITE(CHMAIL,2002) ANGLES CALL GMAIL(0,1) C. C. Put back the angles in place DO 100 J=1,6 Q(JR+10+J) = ANGLES(J) 100 CONTINUE C. C.--- Orthonormalization ended 110 CONTINUE C DO 130 J = 1,3 IP(J) = 3 JJR=JR+J*3-3 C DO 120 I = 1,3 IF(ABS(Q(JJR+I)).LT.0.99999) GO TO 120 C IP(J) = I + 3 IF(Q(JJR+I).GE.0.) GO TO 130 C IP(J) = 3 - I GO TO 130 C 120 CONTINUE 130 CONTINUE C Q(JR + 10) = IP(1) + 10* IP(2) + 100* IP(3) C IF(JR1.GT.0) THEN CALL GPROTM(-NMAT) ENDIF C 1000 FORMAT(' *** GSROTM ***: Warning, rotation matrix redefinition:') 2000 FORMAT(' *** GSROTM ***: ', + 'Parameters of matrix no. ',I4,' changed:') 2001 FORMAT(' Old values: ',6(F14.7,3X)) 2002 FORMAT(' New values: ',6(F14.7,3X)) 999 RETURN END