block data halo include 'halo.inc' data hparX/2.95e1,4.19,-2.40e5,3.53e6,-1.5e-4,1.13e-3, + 1.93e2,-4.54e2,-1.59e6,3.53e6,-3.78e-4,1.13e-3, + 5.95e2,-1.92e3,-4.97e6,3.52e6,-6.75e-4,1.13e-3/ data hparY/1.58e1,-1.06e3,-2.26e5,7.06e6,-1.06e-3,5.67e-4, + 5.27e1,-7.48e2,-6.21e5,7.06e6,-1.17e-3,5.66e-4, + 2.14e2,-6.97e2,-2.10e6,7.06e6,-1.33e-3,5.66e-4/ end real function halox(x,ns) ! halo fits from JLAB-TN-06-048 real x integer ns include 'halo.inc' halox = (hparX(1,ns)+hparX(2,ns)*x+hparX(3,ns)*x**2) + +hparX(4,ns)*exp(-0.5*((x-hparX(5,ns))/hparX(6,ns))**2) halox = max(halox,0.) end real function haloy(y,ns) ! halo fits from JLAB-TN-06-048 real y integer ns include 'halo.inc' haloy = (hparY(1,ns)+hparY(2,ns)*y+hparY(3,ns)*y**2) + +hparY(4,ns)*exp(-0.5*((y-hparY(5,ns))/hparY(6,ns))**2) haloy = max(haloy,0.) end real function haloxy(x,y,ns) ! 2D model by R.T. Jones real x,y integer ns real a,b ! Note regarding halo normalization: real rr0,p0 ! 52% of the integral of this halo parameter (a=1.1e-3) ! intensity function lies outside the parameter (b=0.55e-3) ! nominal 5-sigma ellipse that is often parameter (rr0=15.) ! used to define the boundary of the halo. parameter (p0=1.e-3) ! For example, to generate a 100ppm halo real c0(3),c1,c2 ! beyond the (5a,5b) ellipse boundary, data c0/2.5,15.,48./ ! sample one halo event for every 5.2e3 parameter (c1=0) ! events in the central gaussian. parameter (c2=-1/1.3e-4) real r,rr,theta real p,f r=sqrt(x**2+y**2) rr=sqrt((x/a)**2+(y/b)**2) theta=atan2(y/b,x/a) p=1+p0*(rr*exp(-rr/rr0))**6 f=c0(ns)*(1+c1*r+c2*r**2) haloxy=((f/b)*(cos(theta)**2)**p+(f/(2*a))*(sin(theta)**2)**p) + *sqrt(a**2+b**2) ! + 1e6*exp(-0.5*rr**2) haloxy = max(haloxy,0.) end real function haloc(x,y) ! cut function occludes the central ellipse real x,y haloc=1 if ((x/1.1e-3)**2+(y/0.55e-3)**2.lt.25) then haloc=0 endif end subroutine hmake2(idin,idout,n) ! 2D random point generator integer idin,idout,n real x,y do i=1,n call hrndm2(idin,x,y) call hfill(idout,x,y,1.) enddo end