// $Id$ // Author: David Lawrence June 25, 2004 // // // #include using namespace std; #include #include "DQuickFit.h" #include "DMagneticFieldMap.h" // The following is for sorting hits by z class DQFHitLessThanZ{ public: bool operator()(DQFHit_t* const &a, DQFHit_t* const &b) const { return a->z < b->z; } }; bool DQFHitLessThanZ_C(DQFHit_t* const &a, DQFHit_t* const &b) { return a->z < b->z; } //----------------- // AddHit //----------------- jerror_t DQuickFit::AddHit(float r, float phi, float z) { /// Add a hit to the list of hits using cylindrical coordinates return AddHitXYZ(r*cos(phi), r*sin(phi), z); } //----------------- // AddHitXYZ //----------------- jerror_t DQuickFit::AddHitXYZ(float x, float y, float z) { /// Add a hit to the list of hits useing Cartesian coordinates DQFHit_t *hit = new DQFHit_t; hit->x = x; hit->y = y; hit->z = z; hit->chisq = 0.0; hits.push_back(hit); return NOERROR; } //----------------- // PruneHit //----------------- jerror_t DQuickFit::PruneHit(int idx) { /// Remove the hit specified by idx from the list /// of hits. The value of idx can be anywhere from /// 0 to GetNhits()-1. if(idx<0 || idx>=(int)hits.size())return VALUE_OUT_OF_RANGE; hits.erase(hits.begin() + idx); return NOERROR; } //----------------- // PrintChiSqVector //----------------- jerror_t DQuickFit::PrintChiSqVector(void) { /// Dump the latest chi-squared vector to the screen. /// This prints the individual hits' chi-squared /// contributions in the order in which the hits were /// added. See PruneHits() for more detail. cout<<"Chisq vector from DQuickFit: (source="; switch(chisq_source){ case NOFIT: cout<<"NOFIT"; break; case CIRCLE: cout<<"CIRCLE"; break; case TRACK: cout<<"TRACK"; break; }; cout<<")"<chisq<x; float y=a->y; alpha += x*x; beta += y*y; gamma += x*y; deltax += x*(x*x+y*y)/2.0; deltay += y*(x*x+y*y)/2.0; } // Calculate x0,y0 - the center of the circle x0 = (deltax*beta-deltay*gamma)/(alpha*beta-gamma*gamma); //y0 = (deltay-gamma*x0)/beta; y0 = (deltay*alpha-deltax*gamma)/(alpha*beta-gamma*gamma); // Calculate the phi angle traversed by the track from the // origin to the last hit. NOTE: this can be off by a multiple // of 2pi! double delta_phi=0.0; if(a){ // a should be pointer to last hit from above loop delta_phi = atan2(a->y-y0, a->x-x0); if(delta_phi<0.0)delta_phi += 2.0*M_PI; } // Momentum depends on magnetic field. If bfield has been // set, use it to determine an average value of Bz for this // track. Otherwise, assume -2T. // Also assume a singly charged track (i.e. q=+/-1) // The sign of the charge will be determined below. Bz_avg=-2.0; if(bfield)Bz_avg = bfield->Bz_avg(0.0, 0.0, x0, y0, delta_phi); q = +1.0; float r0 = sqrt(x0*x0 + y0*y0); p_trans = q*Bz_avg*r0*qBr2p; // qBr2p converts to GeV/c phi = atan2(y0,x0) + M_PI_2; if(p_trans<0.0){ p_trans = -p_trans; } if(phi<0)phi+=2.0*M_PI; if(phi>=2.0*M_PI)phi-=2.0*M_PI; // Calculate the chisq chisq = 0.0; for(unsigned int i=0;ix - x0; float y = a->y - y0; float c = sqrt(x*x + y*y) - r0; c *= c; a->chisq = c; chisq+=c; } chisq_source = CIRCLE; return NOERROR; } //----------------- // FitTrack //----------------- jerror_t DQuickFit::FitTrack(void) { /// Find theta, sign of electric charge, total momentum and /// vertex z position. // Points must be in order of increasing Z sort(hits.begin(), hits.end(), DQFHitLessThanZ_C); // Fit to circle to get circle's center FitCircle(); // The thing that is really needed is dphi/dz (where phi is the angle // of the point as measured from the center of the circle, not the beam // line). The relation between phi and z is linear so we use linear // regression to find the slope (dphi/dz). The one complication is // that phi is periodic so the value obtained via the x and y of a // specific point can be off by an integral number of 2pis. Handle this // by assuming the first point is measured before a full rotation // has occurred. Subsequent points should always be within 2pi of // the previous point so we just need to calculate the relative phi // between succesive points and keep a running sum. We do this in // the first loop were we find the mean z and phi values. The regression // formulae are calculated in the second loop. // Calculate phi about circle center for each hit Fill_phi_circle(hits, x0, y0); // Linear regression for z/phi relation float Sxx=0.0, Syy=0.0, Sxy=0.0; for(unsigned int i=0;iz - z_mean; float deltaPhi = a->phi_circle - phi_mean; Syy += deltaZ*deltaZ; Sxx += deltaPhi*deltaPhi; Sxy += deltaZ*deltaPhi; //cout<<__FILE__<<":"<<__LINE__<<" deltaZ="<z_vertex = z_vertex; // Fit to circle to get circle's center FitCircle(); // Calculate phi about circle center for each hit Fill_phi_circle(hits, x0, y0); // Do linear regression on phi-Z float Sx=0, Sy=0; float Sxx=0, Syy=0, Sxy = 0; float r0 = sqrt(x0*x0 + y0*y0); for(unsigned int i=0; iz - z_vertex; float dphi = a->phi_circle; Sx += dz; Sy += r0*dphi; Syy += r0*dphi*r0*dphi; Sxx += dz*dz; Sxy += r0*dphi*dz; } float k = (Syy-Sxx)/(2.0*Sxy); float s = sqrt(k*k + 1.0); float cot_theta1 = -k+s; float cot_theta2 = -k-s; float cot_theta_lin = Sx/Sy; float cot_theta; if(fabs(cot_theta_lin-cot_theta1) < fabs(cot_theta_lin-cot_theta2)){ cot_theta = cot_theta1; }else{ cot_theta = cot_theta2; } dzdphi = r0*cot_theta; //dzdphi = r0*Sx/Sy; // Fill in the rest of the paramters return FillTrackParams(); } //------------------------------------------------------------------ // Fill_phi_circle //------------------------------------------------------------------ jerror_t DQuickFit::Fill_phi_circle(vector hits, float x0, float y0) { float x_last = -x0; float y_last = -y0; float phi_last = 0.0; z_mean = phi_mean = 0.0; for(unsigned int i=0; ix - x0; float dy = a->y - y0; float dphi = atan2f(dx*y_last - dy*x_last, dx*x_last + dy*y_last); float my_phi = phi_last +dphi; a->phi_circle = my_phi; z_mean += a->z; phi_mean += my_phi; x_last = dx; y_last = dy; phi_last = my_phi; } z_mean /= (float)hits.size(); phi_mean /= (float)hits.size(); return NOERROR; } //------------------------------------------------------------------ // FillTrackParams //------------------------------------------------------------------ jerror_t DQuickFit::FillTrackParams(void) { /// Fill in and tweak some parameters like q, phi, theta using /// other values already set in the class. This is used by /// both FitTrack() and FitTrack_FixedZvertex(). float r0 = sqrt(x0*x0 + y0*y0); theta = atan(r0/fabs(dzdphi)); // p_trans was calculated using a B-field at a single value // of z. Now we can average the B-field over the path of // the helix in 3 dimensions to get a more accurate value. if(bfield){ double zmax = hits[hits.size()-1]->z; if(zmax < z_vertex)zmax=hits[0]->z; double Bz_avg = bfield->Bz_avg(0.0, 0.0, z_vertex, x0, y0, theta, zmax); p_trans *= Bz_avg/this->Bz_avg; } // The sign of the electric charge will be opposite that // of dphi/dz. Also, the value of phi will be PI out of phase if(dzdphi<0.0){ phi += M_PI; if(phi<0)phi+=2.0*M_PI; if(phi>=2.0*M_PI)phi-=2.0*M_PI; }else{ q = -q; } // Re-calculate chi-sq (needs to be done) chisq_source = TRACK; // Up to now, the fit has assumed a forward going particle. In // other words, if the particle is going backwards, the helix does // actually still go through the points, but only if extended // backward in time. We use the average z of the hits compared // to the reconstructed vertex to determine if it was back-scattered. if(z_mean=2.0*M_PI)phi-=2.0*M_PI; q = -q; } // There is a problem with theta for data generated with a uniform // field. The following factor is emprical until I can figure out // what the source of the descrepancy is. //theta += 0.1*pow((double)sin(theta),2.0); p = fabs(p_trans/sin(theta)); return NOERROR; } //------------------------------------------------------------------ // Print //------------------------------------------------------------------ jerror_t DQuickFit::Print(void) { cout<<"-- DQuickFit Params ---------------"<chisq_limit. The value of the individual /// contribution is calculated like: /// /// \f$ r_0 = \sqrt{x_0^2 + y_0^2} \f$
/// \f$ r_i = \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2} \f$
/// \f$ \chi_i^2 = (r_i-r_0)^2 \f$
if(hits.size() != chisqv.size()){ cerr<<__FILE__<<":"<<__LINE__<<" hits and chisqv do not have the same number of rows!"<=0; i--){ if(chisqv[i] > chisq_limit)PruneHit(i); } return NOERROR; } //----------------- // PruneOutliers //----------------- jerror_t DQuickFit::PruneOutlier(void) { /// Remove the point which is furthest from the geometric /// center of all the points in the X/Y plane. /// /// This just calculates the average x and y values of /// registered hits. It finds the distance of every hit /// with respect to the geometric mean and removes the /// hit whose furthest from the mean. float X=0, Y=0; for(unsigned int i=0;ix(); Y += v->y(); } X /= (float)hits.size(); Y /= (float)hits.size(); float max =0.0; int idx = -1; for(unsigned int i=0;ix()-X; float y = v->y()-Y; float dist_sq = x*x + y*y; // we don't need to take sqrt just to find max if(dist_sq>max){ max = dist_sq; idx = i; } } if(idx>=0)PruneHit(idx); return NOERROR; } //----------------- // PruneOutliers //----------------- jerror_t DQuickFit::PruneOutliers(int n) { /// Remove the n points which are furthest from the geometric /// center of all the points in the X/Y plane. /// /// This just calls PruneOutlier() n times. Since the mean /// can change each time, it should be recalculated after /// every hit is removed. for(int i=0;ix, y1=hit1->y; float x2 = hit2->x, y2=hit2->y; float x3 = hit3->x, y3=hit3->y; float b = (x2*x2+y2*y2-x1*x1-y1*y1)/(2.0*(x2-x1)); b -= (x3*x3+y3*y3-x1*x1-y1*y1)/(2.0*(x3-x1)); b /= ((y1-y2)/(x1-x2)) - ((y1-y3)/(x1-x3)); float a = (x2*x2-y2*y2-x1*x1-y1*y1)/(2.0*(x2-x1)); a -= b*(y2-y1)/(x2-x1); // Above is the method from Curtis's crystal barrel note 93, pg 72 // Below here is just a copy of the code from David's firstguess // routine above (after the x0,y0 calculation) float x0=a, y0=b; // Momentum depends on magnetic field. Assume 2T for now. // Also assume a singly charged track (i.e. q=+/-1) // The sign of the charge will be deterined below. float B=-2.0*0.593; // The 0.61 is empirical q = +1.0; float r0 = sqrt(x0*x0 + y0*y0); float hbarc = 197.326; float p_trans = q*B*r0/hbarc; // are these the right units? // Assuming points are ordered in increasing z, the sign of the // cross-product between successive points will be the opposite // sign of the charge. Since it's possible to have a few "bad" // points, we don't want to rely on any one to determine this. // The method we use is to sum cross-products of the first and // middle points, the next-to-first and next-to-middle, etc. float xprod_sum = 0.0; int n_2 = Npoints/2; s_Cdc_trackhit_t *v = hits; s_Cdc_trackhit_t *v2=&hits[n_2]; for(int i=0;ix*v2->y - v2->x*v->y; } if(xprod_sum>0.0)q = -q; // Phi is pi/2 out of phase with x0,y0. The sign of the phase difference // depends on the charge phi = atan2(y0,x0); phi += q>0.0 ? -M_PI_2:M_PI_2; // Theta is determined by extrapolating the helix back to the target. // To do this, we need dphi/dz and a phi,z point. The easiest way to // get these is by a simple average (I guess). v = hits; v2=&v[1]; float dzdphi =0.0; int Ndzdphipoints = 0; for(int i=0;iy-y0, v->x-x0); float myphi2 = atan2(v2->y-y0, v2->x-x0); float mydzdphi = (v2->z-v->z)/(myphi2-myphi1); if(finite(mydzdphi)){ dzdphi+=mydzdphi; Ndzdphipoints++; } } if(Ndzdphipoints){ dzdphi/=(float)Ndzdphipoints; } theta = atan(r0/fabs(dzdphi)); p = -p_trans/sin(theta); return NOERROR; } #endif