

This document must be received by close of business Monday, May 6, 2013 at:

Jefferson Lab Mail Stop 12B 12000 Jefferson Ave. Newport News, Va 23606

Jefferson Lab PAC 40 **Proposal Cover Sheet**

Experimental Hall:	D
Days Requested for Approval:	25

Proposal Title:

Measuring the Charged Pion Polarizability in the \$\gamma \gamma \rightarrow \pi^+ \pi^-\$ Reaction

Proposal Physics Goals: Indicate any Experiments that have physics goals similar to those in your proposal.

Approved Conditionally approved, and/or Deferred Experiment(s) or proposals.

Collaboration-Approved Proposals: If you will be running in parallel with an approved experiment, please indicate the experiment number.

Key Experimental Para	meters		
List Beam Energies and 25 days at 12GeV	d Beam Days: (e.g. 30 Days at	11 G	eV, 20 Days at 8 GeV)
List Range of Beam Cu 1nA - 50nA	rrents: (e.g. 10-60 mA)		
Indicate Major Apparate GLUEX	us: (e.g. CLAS12 & RICH, GLU	EX, S	SHMS, HMS, SBS, SOLID)
Contact person:		:	Spokespersons:
Name :	Rory Miskimen		1. Rory Miskimen
Institution :	Univ. of Massachusetts		2. Elton Smith 3. David Lawrence
Address :	710 N. Pleasant St.		 David Lawrence 4.
			-

Address :		5.	
City, State, ZIP/Country :	Amherst, MA 01003	6. 7.	
Phone :	413-824-6293	8.	
Fax :			
Email :	miskimen@physics.umass.edu		
Contact person:			
Recipient Date : By :	5/5/2013		

LAB RESOURCES LIST

Jlab Proposal No. :

Date

List below significant resources - both in equipment and human - that you are requesting from Jefferson Lab in support of mounting and executing the proposed experiment. Do not include item that will be routinely supplied to all running experiments such as the base equipment for the hall and technical support for routine operation, installation, and maintenance.

Major Installations (either your equip. or new equip requested from JLab) Muon detection system **Major Equipment**

Magnets :

Power Supplies:

New Support Structures

Data Acquisition/ Reduction

New Support Structures

New Software

Targets:

Solid target at z=1cm (in Hall-D coordinate system)

Detectors:

muon detection system (additional wire chambers and Iron absorber)

Electronics: Readout for muon detection system

Computer Hardware:

Other:

Other:

BEAM REQUIREMENTS LIST

Jlab Proposal No :).	Date :
Hall: D An	ticipated Run Date	PAC Approved Days:
Spokesperson:	Rory Miskimen	Phone: 413-824-6293
Email:	miskimen@physics.umass.edu	Hall Liaison:

List all combinations of anticipated targets and beam considerations required to execute the experiment. (This list will form the primary basis for the Radiation Safety Assessment Document (RSAD) calculations that must be performed for each experiment.)

Condition No.	Beam Energy (MeV)		Polarization and Other Special Requirements (e.g. time structure)	Target Material (use multiple rows for complex targets - e.g. w/windows)	Material Thickness (mg/cm ²)	Est. Beam- On Time for cond. No. (hours)
1	12GeV	0.050	linearly polarized photons	Sn116	440	600

The beam energies, E_{Beam} , available are: $E_{Beam} = N \times E_{Linac}$ where N = 1, 2, 3, 4, or 5. $E_{Linac} = 800$ MeV, i.e, available E_{Beam} are 800, 1600, 2400, 3200 and 4000 MeV. Other energies should be arranged with the hall leader before listing.

HAZARD IDENTIFICATION CHECKLIST

Jlab Proposal No. :	Date :	
•		

 anal target type flow capa 	rate:	Electrical Equipment Cryo/electrical devices Capacitor banks High voltage Caposed equipment	Radioactive/Hazardous Materials List any radioactive or hazardous/toxic materials planned for use:
Pressure Vesse inside diam operating p window ma window thi Special Target *Helium (³ H Deuterium	neter pressure aterial ickness Materials	Flammable Gas or Liquids type: flow rate: capacity: Drift Containers type: flow rate: capacity:	Other Target Materials Beryllium (Be) Lithium (Li) Mercury (Hg) Lead (Pb) Tungsten (W) Uranium (U) *Helium (³He) Other (List below)
Vacuum Vesse inside diam operating pr window ma window thic	eter ressure terial	Radioactive Sources permanent installation temporary use type: strength:	 Other (List below) 1,Sn116 Large Mech. Structure/System lisfting devices motion controllers scaffolding or elevated platforms
Lasers type: wattage: class: Installation: Use:	 permanent temporary 	 Hazardous Materials cyanide plating materials scintillation oil (from) PCB's methane TMAE TEA photographic developers other (list below) 	 General Experiment Class Base Equipment Temp. Mod. to Base Equip. Permanent Mod to Base Equipment Major New Apparatus Other:

calibration	
🔲 alignment	

Data:

Proposal Title: Measuring the Charged Pion Polarizability in the \$\gamma \gamma \rightarrow \pi^+ \pi^-\$ Reaction

Spokesperson: Rory Miskimen Experimental Hall:

Raw Data Expected

Silo/Mass Storage (Tape): 320 TB

Amount of Simulated Data Expected (TB): 9

Amount of Raw Data Expected (TB) 260

Amount of Processed Data Expected: 35

Online Storage (Disk) Required (TB): 25

Imported Data Expected from Offsite Institutions:0

Exported Data Expected to Offsite Locations: 20

Computing:

Simulation Requirements (SPEC CINT2000 hrs):

Production (Replay, Analysis, Cooking) Requirements (SPEC CINT2000 hrs): 1000 cores

Other Requirements

Please add any additional information that will be useful for JLab's Information Technology group regarding unique configurations or that may require additional resources and/or coordination. Please indicate if possible what fraction of these resources will be provided by collaborating institutions and how much is expected to be provided by JLab.