// Set of routines for fitting tracks in both the cdc and fdc assuming a // uniform magnetic field. The track therefore is assumed to follow a helical // path. #include #include using namespace std; #include #include #include "DHelicalFit.h" #define qBr2p 0.003 // conversion for converting q*B*r to GeV/c #define Z_VERTEX 65.0 #define Z_MIN 45.0 #define Z_MAX 85.0 // The following is for sorting hits by z class DHFHitLessThanZ{ public: bool operator()(DHFHit_t* const &a, DHFHit_t* const &b) const { return a->z < b->z; } }; bool DHFHitLessThanZ_C(DHFHit_t* const &a, DHFHit_t* const &b) { return a->z < b->z; } bool RiemannFit_hit_cmp(DHFHit_t *a,DHFHit_t *b){ return (a->z>b->z); } //----------------- // DHelicalFit (Constructor) //----------------- DHelicalFit::DHelicalFit(void) { x0 = y0 = r0 = 0; chisq = 0; chisq_source = NOFIT; bfield = NULL; // For Riemann Fit CovR_=NULL; CovRPhi_=NULL; c_origin=0.; normal.SetXYZ(0.,0.,0.); } //----------------- // DHelicalFit (Constructor) //----------------- DHelicalFit::DHelicalFit(const DHelicalFit &fit) { Copy(fit); } //----------------- // Copy //----------------- void DHelicalFit::Copy(const DHelicalFit &fit) { x0 = fit.x0; y0 = fit.y0; q = fit.q; p = fit.p; p_trans = fit.p_trans; phi = fit.phi; theta = fit.theta; z_vertex = fit.z_vertex; chisq = fit.chisq; dzdphi = fit.dzdphi; chisq_source = fit.chisq_source; bfield = fit.GetMagneticFieldMap(); Bz_avg = fit.GetBzAvg(); z_mean = fit.GetZMean(); phi_mean = fit.GetPhiMean(); const vector myhits = fit.GetHits(); for(unsigned int i=0; ioperator()(i,j)=fit.CovR_->operator()(i,j); } else CovR_=NULL; if (fit.CovRPhi_!=NULL){ CovRPhi_ = new DMatrix(hits.size(),hits.size()); for (unsigned int i=0;ioperator()(i,j)=fit.CovRPhi_->operator()(i,j); } else CovRPhi_=NULL; } //----------------- // operator= (Assignment operator) //----------------- DHelicalFit& DHelicalFit::operator=(const DHelicalFit& fit) { if(this == &fit)return *this; Copy(fit); return *this; } //----------------- // DHelicalFit (Destructor) //----------------- DHelicalFit::~DHelicalFit() { Clear(); } //----------------- // AddHit //----------------- jerror_t DHelicalFit::AddHit(float r, float phi, float z) { /// Add a hit to the list of hits using cylindrical coordinates return AddHitXYZ(r*cos(phi), r*sin(phi), z); } //----------------- // AddHitXYZ //----------------- jerror_t DHelicalFit::AddHitXYZ(float x, float y, float z) { /// Add a hit to the list of hits using Cartesian coordinates DHFHit_t *hit = new DHFHit_t; hit->x = x; hit->y = y; hit->z = z; hit->covx=1.; hit->covy=1.; hit->covxy=0.; hit->chisq = 0.0; hits.push_back(hit); return NOERROR; } // Add a hit to the list of hits using Cartesian coordinates jerror_t DHelicalFit::AddHitXYZ(float x,float y, float z,float covx, float covy, float covxy){ DHFHit_t *hit = new DHFHit_t; hit->x = x; hit->y = y; hit->z = z; hit->covx=covx; hit->covy=covy; hit->covxy=covxy; hits.push_back(hit); return NOERROR; } //----------------- // PruneHit //----------------- jerror_t DHelicalFit::PruneHit(int idx) { /// Remove the hit specified by idx from the list /// of hits. The value of idx can be anywhere from /// 0 to GetNhits()-1. if(idx<0 || idx>=(int)hits.size())return VALUE_OUT_OF_RANGE; delete hits[idx]; hits.erase(hits.begin() + idx); return NOERROR; } //----------------- // Clear //----------------- jerror_t DHelicalFit::Clear(void) { /// Remove covariance matrices if (CovR_!=NULL) delete CovR_; if (CovRPhi_!=NULL) delete CovRPhi_; /// Remove all hits for(unsigned int i=0; ichisq<x; float y=a->y; alpha += x*x; beta += y*y; gamma += x*y; deltax += x*(x*x+y*y)/2.0; deltay += y*(x*x+y*y)/2.0; } // Calculate x0,y0 - the center of the circle double denom = alpha*beta-gamma*gamma; if(fabs(denom)<1.0E-20)return UNRECOVERABLE_ERROR; x0 = (deltax*beta-deltay*gamma)/denom; //y0 = (deltay-gamma*x0)/beta; y0 = (deltay*alpha-deltax*gamma)/denom; // Calculate the phi angle traversed by the track from the // origin to the last hit. NOTE: this can be off by a multiple // of 2pi! double delta_phi=0.0; if(a){ // a should be pointer to last hit from above loop delta_phi = atan2(a->y-y0, a->x-x0); if(delta_phi<0.0)delta_phi += 2.0*M_PI; } // Momentum depends on magnetic field. If bfield has been // set, we should use it to determine an average value of Bz // for this track. Otherwise, assume -2T. // Also assume a singly charged track (i.e. q=+/-1) // The sign of the charge will be determined below. Bz_avg=-2.0; q = +1.0; r0 = sqrt(x0*x0 + y0*y0); p_trans = q*Bz_avg*r0*qBr2p; // qBr2p converts to GeV/c phi = atan2(y0,x0) - M_PI_2; if(p_trans<0.0){ p_trans = -p_trans; } if(phi<0)phi+=2.0*M_PI; if(phi>=2.0*M_PI)phi-=2.0*M_PI; // Calculate the chisq ChisqCircle(); chisq_source = CIRCLE; return NOERROR; } //----------------- // ChisqCircle //----------------- double DHelicalFit::ChisqCircle(void) { /// Calculate the chisq for the hits and current circle /// parameters. /// NOTE: This does not return the chi2/dof, just the /// raw chi2 with errs set to 1.0 chisq = 0.0; for(unsigned int i=0;ix - x0; float y = a->y - y0; float c = sqrt(x*x + y*y) - r0; c *= c; a->chisq = c; chisq+=c; } // Do NOT divide by DOF return chisq; } //----------------- // FitCircleRiemann //----------------- jerror_t DHelicalFit::FitCircleRiemann(float BeamRMS) { chisq_source = NOFIT; // in case we return early // Fake point at origin float beam_var=BeamRMS*BeamRMS; AddHitXYZ(0.,0.,Z_VERTEX,beam_var,beam_var,0.); jerror_t err = FitCircleRiemann(); if(err!=NOERROR)return err; // Momentum depends on magnetic field. If bfield has been // set, we should use it to determine an average value of Bz // for this track. Otherwise, assume -2T. // Also assume a singly charged track (i.e. q=+/-1) // The sign of the charge will be determined below. Bz_avg=-2.0; q = +1.0; p_trans = q*Bz_avg*r0*qBr2p; // qBr2p converts to GeV/c if(p_trans<0.0){ p_trans = -p_trans; } phi=atan2(-x0,y0); if(phi<0)phi+=2.0*M_PI; if(phi>=2.0*M_PI)phi-=2.0*M_PI; // Normal vector for plane intersecting Riemann surface normal(0)=N[0]; normal(1)=N[1]; normal(2)=N[2]; return NOERROR; } //----------------- // FitCircleRiemann //----------------- jerror_t DHelicalFit::FitCircleRiemann(void){ /// Riemann Circle fit: points on a circle in x,y project onto a plane cutting /// the circular paraboloid surface described by (x,y,x^2+y^2). Therefore the /// task of fitting points in (x,y) to a circle is transormed to the task of /// fitting planes in (x,y, w=x^2+y^2) space /// DMatrix X(hits.size(),3); DMatrix Xavg(1,3); DMatrix A(3,3); double B0,B1,B2,Q,Q1,R,sum,diff; double theta,lambda_min=0.; // Column and row vectors of ones DMatrix Ones(hits.size(),1),OnesT(1,hits.size()); DMatrix W_sum(1,1); DMatrix W(hits.size(),hits.size()); // Make sure hit list is ordered in z std::sort(hits.begin(),hits.end(),RiemannFit_hit_cmp); // Covariance matrix DMatrix CRPhi(hits.size(),hits.size()); if (CovRPhi_==NULL){ CovRPhi_ = new DMatrix(hits.size(),hits.size()); for (unsigned int i=0;iy,hits[i]->x); CovRPhi_->operator()(i,i) =(Phi*cos(Phi)-sin(Phi))*(Phi*cos(Phi)-sin(Phi))*hits[i]->covx +(Phi*sin(Phi)+cos(Phi))*(Phi*sin(Phi)+cos(Phi))*hits[i]->covy +2.*(Phi*sin(Phi)+cos(Phi))*(Phi*cos(Phi)-sin(Phi))*hits[i]->covxy; } } for (unsigned int i=0;ioperator()(i, j); // The goal is to find the eigenvector corresponding to the smallest // eigenvalue of the equation // lambda=n^T (X^T W X - W_sum Xavg^T Xavg)n // where n is the normal vector to the plane slicing the cylindrical // paraboloid described by the parameterization (x,y,w=x^2+y^2), // and W is the weight matrix, assumed for now to be diagonal. // In the absence of multiple scattering, W_sum is the sum of all the // diagonal elements in W. for (unsigned int i=0;ix; X(i,1)=hits[i]->y; X(i,2)=hits[i]->x*hits[i]->x+hits[i]->y*hits[i]->y; Ones(i,0)=OnesT(0,i)=1.; } // Check that CRPhi is invertible TDecompLU lu(CRPhi); if (lu.Decompose()==false){ return UNRECOVERABLE_ERROR; // error placeholder } W=DMatrix(DMatrix::kInverted,CRPhi); W_sum=OnesT*(W*Ones); Xavg=(1./W_sum(0,0))*(OnesT*(W*X)); A=DMatrix(DMatrix::kTransposed,X)*(W*X) -W_sum(0,0)*(DMatrix(DMatrix::kTransposed,Xavg)*Xavg); if(!A.IsValid())return UNRECOVERABLE_ERROR; // The characteristic equation is // lambda^3+B2*lambda^2+lambda*B1+B0=0 // B2=-(A(0,0)+A(1,1)+A(2,2)); B1=A(0,0)*A(1,1)-A(1,0)*A(0,1)+A(0,0)*A(2,2)-A(2,0)*A(0,2)+A(1,1)*A(2,2) -A(2,1)*A(1,2); B0=-A.Determinant(); if(B0==0 || !finite(B0))return UNRECOVERABLE_ERROR; // The roots of the cubic equation are given by // lambda1= -B2/3 + S+T // lambda2= -B2/3 - (S+T)/2 + i sqrt(3)/2. (S-T) // lambda3= -B2/3 - (S+T)/2 - i sqrt(3)/2. (S-T) // where we define some temporary variables: // S= (R+sqrt(Q^3+R^2))^(1/3) // T= (R-sqrt(Q^3+R^2))^(1/3) // Q=(3*B1-B2^2)/9 // R=(9*B2*B1-27*B0-2*B2^3)/54 // sum=S+T; // diff=i*(S-T) // We divide Q and R by a safety factor to prevent multiplying together // enormous numbers that cause unreliable results. Q=(3.*B1-B2*B2)/9.e4; R=(9.*B2*B1-27.*B0-2.*B2*B2*B2)/54.e6; Q1=Q*Q*Q+R*R; if (Q1<0) Q1=sqrt(-Q1); else{ return VALUE_OUT_OF_RANGE; } // DeMoivre's theorem for fractional powers of complex numbers: // (r*(cos(theta)+i sin(theta)))^(p/q) // = r^(p/q)*(cos(p*theta/q)+i sin(p*theta/q)) // double temp=100.*pow(R*R+Q1*Q1,0.16666666666666666667); theta=atan2(Q1,R)/3.; sum=2.*temp*cos(theta); diff=-2.*temp*sin(theta); // Third root lambda_min=-B2/3.-sum/2.+sqrt(3.)/2.*diff; // Calculate the (normal) eigenvector corresponding to the eigenvalue lambda N[0]=1.; N[1]=(A(1,0)*A(0,2)-(A(0,0)-lambda_min)*A(1,2)) /(A(0,1)*A(2,1)-(A(1,1)-lambda_min)*A(0,2)); N[2]=(A(2,0)*(A(1,1)-lambda_min)-A(1,0)*A(2,1)) /(A(1,2)*A(2,1)-(A(2,2)-lambda_min)*(A(1,1)-lambda_min)); // Normalize: n1^2+n2^2+n3^2=1 sum=0.; for (int i=0;i<3;i++){ sum+=N[i]*N[i]; } for (int i=0;i<3;i++){ N[i]/=sqrt(sum); } // Distance to origin c_origin=-(N[0]*Xavg(0,0)+N[1]*Xavg(0,1)+N[2]*Xavg(0,2)); // Center and radius of the circle x0=-N[0]/2./N[2]; y0=-N[1]/2./N[2]; r0=sqrt(1.-N[2]*N[2]-4.*c_origin*N[2])/2./fabs(N[2]); // Phi value at "vertex" phi=atan2(-x0,y0); if(phi<0)phi+=2.0*M_PI; if(phi>=2.0*M_PI)phi-=2.0*M_PI; // Calculate the chisq ChisqCircle(); chisq_source = CIRCLE; return NOERROR; } //----------------- // FitCircleRiemannCorrected //----------------- // Riemann Circle fit with correction for non-normal track incidence // jerror_t DHelicalFit::FitCircleRiemannCorrected(float rc){ // Covariance matrices DMatrix CRPhi(hits.size(),hits.size()); DMatrix CR(hits.size(),hits.size()); // Auxiliary matrices for correcting for non-normal track incidence to FDC // The correction is // CRPhi'= C*CRPhi*C+S*CR*S, where S(i,i)=R_i*kappa/2 // and C(i,i)=sqrt(1-S(i,i)^2) DMatrix C(hits.size(),hits.size()); DMatrix S(hits.size(),hits.size()); for (unsigned int i=0;i0){ double rtemp=sqrt(hits[i]->x*hits[i]->x+hits[i]->y*hits[i]->y); double stemp=rtemp/4./rc; double ctemp=1.-stemp*stemp; if (ctemp>0){ S(i,i)=stemp; C(i,i)=sqrt(ctemp); } } } // Covariance matrices if (CovRPhi_==NULL){ CovRPhi_ = new DMatrix(hits.size(),hits.size()); for (unsigned int i=0;iy,hits[i]->x); CovRPhi_->operator()(i,i) =(Phi*cos(Phi)-sin(Phi))*(Phi*cos(Phi)-sin(Phi))*hits[i]->covx +(Phi*sin(Phi)+cos(Phi))*(Phi*sin(Phi)+cos(Phi))*hits[i]->covy +2.*(Phi*sin(Phi)+cos(Phi))*(Phi*cos(Phi)-sin(Phi))*hits[i]->covxy; } } if (CovR_==NULL){ CovR_= new DMatrix(hits.size(),hits.size()); for (unsigned int m=0;my,hits[m]->x); CovR_->operator()(m,m)=cos(Phi)*cos(Phi)*hits[m]->covx +sin(Phi)*sin(Phi)*hits[m]->covy +2.*sin(Phi)*cos(Phi)*hits[m]->covxy; } } for (unsigned int i=0;ioperator()(i, j); CRPhi(i,j)=CovRPhi_->operator()(i, j); } } // Correction for non-normal incidence of track on FDC CRPhi=C*CRPhi*C+S*CR*S; for (unsigned int i=0;ioperator()(i,j)=CRPhi(i,j); return FitCircleRiemann(); } //----------------- // GetChargeRiemann //----------------- // Charge-finding routine with corrected CRPhi (see above) // jerror_t DHelicalFit::GetChargeRiemann(float rc_input){ // Covariance matrices DMatrix CRPhi(hits.size(),hits.size()); DMatrix CR(hits.size(),hits.size()); // Auxiliary matrices for correcting for non-normal track incidence to FDC // The correction is // CRPhi'= C*CRPhi*C+S*CR*S, where S(i,i)=R_i*kappa/2 // and C(i,i)=sqrt(1-S(i,i)^2) DMatrix C(hits.size(),hits.size()); DMatrix S(hits.size(),hits.size()); for (unsigned int i=0;ix*hits[i]->x+hits[i]->y*hits[i]->y); double stemp=rtemp/4./rc_input; double ctemp=1.-stemp*stemp; if (ctemp>0){ S(i,i)=stemp; C(i,i)=sqrt(ctemp); } else{ S(i,i)=0.; C(i,i)=1; } } // Covariance matrices if (CovRPhi_==NULL){ CovRPhi_ = new DMatrix(hits.size(),hits.size()); for (unsigned int i=0;iy,hits[i]->x); CovRPhi_->operator()(i,i) =(Phi*cos(Phi)-sin(Phi))*(Phi*cos(Phi)-sin(Phi))*hits[i]->covx +(Phi*sin(Phi)+cos(Phi))*(Phi*sin(Phi)+cos(Phi))*hits[i]->covy +2.*(Phi*sin(Phi)+cos(Phi))*(Phi*cos(Phi)-sin(Phi))*hits[i]->covxy; } } if (CovR_==NULL){ CovR_= new DMatrix(hits.size(),hits.size()); for (unsigned int m=0;my,hits[m]->x); CovR_->operator()(m,m)=cos(Phi)*cos(Phi)*hits[m]->covx +sin(Phi)*sin(Phi)*hits[m]->covy +2.*sin(Phi)*cos(Phi)*hits[m]->covxy; } } for (unsigned int i=0;ioperator()(i, j); CRPhi(i,j)=CovRPhi_->operator()(i, j); } } // Correction for non-normal incidence of track on FDC CRPhi=C*CRPhi*C+S*CR*S; for (unsigned int i=0;ioperator()(i,j)=CRPhi(i,j); return GetChargeRiemann(); } //----------------- // GetChargeRiemann //----------------- // Linear regression to find charge // jerror_t DHelicalFit::GetChargeRiemann(){ // Covariance matrices DMatrix CRPhi(hits.size(),hits.size()); DMatrix CR(hits.size(),hits.size()); if (CovRPhi_==NULL){ CovRPhi_ = new DMatrix(hits.size(),hits.size()); for (unsigned int i=0;iy,hits[i]->x); CovRPhi_->operator()(i,i) =(Phi*cos(Phi)-sin(Phi))*(Phi*cos(Phi)-sin(Phi))*hits[i]->covx +(Phi*sin(Phi)+cos(Phi))*(Phi*sin(Phi)+cos(Phi))*hits[i]->covy +2.*(Phi*sin(Phi)+cos(Phi))*(Phi*cos(Phi)-sin(Phi))*hits[i]->covxy; } } if (CovR_==NULL){ CovR_= new DMatrix(hits.size(),hits.size()); for (unsigned int m=0;my,hits[m]->x); CovR_->operator()(m,m)=cos(Phi)*cos(Phi)*hits[m]->covx +sin(Phi)*sin(Phi)*hits[m]->covy +2.*sin(Phi)*cos(Phi)*hits[m]->covxy; } } for (unsigned int i=0;ioperator()(i, j); CRPhi(i,j)=CovRPhi_->operator()(i, j); } } double phi_old=atan2(hits[0]->y,hits[0]->x); double sumv=0,sumy=0,sumx=0,sumxx=0,sumxy=0; for (unsigned int k=0;ky,hit->x); // Check for problem regions near +pi and -pi if (fabs(phi_z-phi_old)>M_PI){ if (phi_old<0) phi_z-=2.*M_PI; else phi_z+=2.*M_PI; } double inv_var=(hit->x*hit->x+hit->y*hit->y) /(CRPhi(k,k)+phi_z*phi_z*CR(k,k)); sumv+=inv_var; sumy+=phi_z*inv_var; sumx+=hit->z*inv_var; sumxx+=hit->z*hit->z*inv_var; sumxy+=phi_z*hit->z*inv_var; phi_old=phi_z; } double slope=(sumv*sumxy-sumy*sumx)/(sumv*sumxx-sumx*sumx); // Guess particle charge (+/-1); q=+1.; if (slope<0.) q= -1.; return NOERROR; } //----------------- // FitLineRiemann //----------------- jerror_t DHelicalFit::FitLineRiemann(){ /// Riemann Line fit: linear regression of s on z to determine the tangent of /// the dip angle and the z position of the closest approach to the beam line. /// Computes intersection points along the helical path. /// // Get covariance matrix DMatrix CR(hits.size(),hits.size()); if (CovR_==NULL){ CovR_= new DMatrix(hits.size(),hits.size()); for (unsigned int m=0;my,hits[m]->x); CovR_->operator()(m,m)=cos(Phi)*cos(Phi)*hits[m]->covx +sin(Phi)*sin(Phi)*hits[m]->covy +2.*sin(Phi)*cos(Phi)*hits[m]->covxy; } } for (unsigned int i=0;ioperator()(i, j); // Fill vector of intersection points double x_int0,temp,y_int0; double denom= N[0]*N[0]+N[1]*N[1]; double numer; vectorbad(hits.size()); int numbad=0; // Clear old projection vector projections.clear(); for (unsigned int m=0;mx*hits[m]->x+hits[m]->y*hits[m]->y; numer=c_origin+r2*N[2]; DHFHit_t *temphit = new DHFHit_t; temphit->z=hits[m]->z; if (r2==0){ temphit->x=0.; temphit->y=0.; // bad[m]=1; } else{ x_int0=-N[0]*numer/denom; y_int0=-N[1]*numer/denom; temp=denom*r2-numer*numer; if (temp<0){ // Skip point if the intersection gives nonsense bad[m]=1; numbad++; temphit->x=x_int0; temphit->y=y_int0; projections.push_back(temphit); continue; } temp=sqrt(temp)/denom; // Choose sign of square root based on proximity to actual measurements double diffx1=x_int0+N[1]*temp-hits[m]->x; double diffy1=y_int0-N[0]*temp-hits[m]->y; double diffx2=x_int0-N[1]*temp-hits[m]->x; double diffy2=y_int0+N[0]*temp-hits[m]->y; if (diffx1*diffx1+diffy1*diffy1 > diffx2*diffx2+diffy2*diffy2){ temphit->x=x_int0-N[1]*temp; temphit->y=y_int0+N[0]*temp; } else{ temphit->x=x_int0+N[1]*temp; temphit->y=y_int0-N[0]*temp; } } projections.push_back(temphit); } // All arc lengths are measured relative to some reference plane with a hit. // Don't use a "bad" hit for the reference... unsigned int start=0; for (unsigned int i=0;ix-projections[start]->x; double diffy=projections[k]->y-projections[start]->y; chord=sqrt(diffx*diffx+diffy*diffy); ratio=chord/2./r0; // Make sure the argument for the arcsin does not go out of range... if (ratio>1.) sperp=2.*r0*(M_PI/2.); else sperp=2.*r0*asin(ratio); if (sperp-sperp_old<0.){ if (k==n-1) sperp=2.*r0*M_PI-sperp; } z=projections[k]->z; // Assume errors in s dominated by errors in R sumv+=1./CR(k,k); sumy+=sperp/CR(k,k); sumx+=projections[k]->z/CR(k,k); sumxx+=projections[k]->z*projections[k]->z/CR(k,k); sumxy+=sperp*projections[k]->z/CR(k,k); } } Delta=sumv*sumxx-sumx*sumx; // Track parameters tan(lambda) and z-vertex tanl=-Delta/(sumv*sumxy-sumy*sumx); z_vertex=(sumxx*sumy-sumx*sumxy)/Delta; // Use the last z and s values to estimate the vertex position if the first // method gave a result beyond the extent of the target if (z_vertexZ_MAX){ sperp-=sperp_old; double myz_vertex=z_last-sperp*tanl; if (fabs(myz_vertex-Z_VERTEX)x,2.0) + pow((double)a->y, 2.0)); // weight by r to give outer points more influence. Note that // we really are really weighting by r^2 since x and y already // have a magnitude component. X += a->x*r; Y += a->y*r; } phi = atan2(Y,X); if(phi<0)phi+=2.0*M_PI; if(phi>=2.0*M_PI)phi-=2.0*M_PI; // Search the chi2 space for values for p_trans, x0, ... SearchPtrans(9.0, 0.5); #if 0 // We do a simple linear regression here to find phi. This is // simplified by the intercept being zero (i.e. the track // passes through the beamline). float Sxx=0.0, Syy=0.0, Sxy=0.0; chisq_source = NOFIT; // in case we return early // Loop over hits to calculate Sxx, Syy, and Sxy DHFHit_t *a = NULL; for(unsigned int i=0;ix; float y=a->y; Sxx += x*x; Syy += y*y; Sxy += x*y; } double A = 2.0*Sxy; double B = Sxx - Syy; phi = B>A ? atan2(A,B)/2.0 : 1.0/atan2(B,A)/2.0; if(phi<0)phi+=2.0*M_PI; if(phi>=2.0*M_PI)phi-=2.0*M_PI; #endif return NOERROR; } //----------------- // SearchPtrans //----------------- void DHelicalFit::SearchPtrans(double ptrans_max, double ptrans_step) { /// Search the chi2 space as a function of the transverse momentum /// for the minimal chi2. The values corresponding to the minmal /// chi2 are left in chisq, x0, y0, r0, q, and p_trans. /// /// This does NOT optimize the value of p_trans. It simply /// does a straight forward chisq calculation on a grid /// and keeps the best one. It is intended for use in finding /// a reasonable value for p_trans for straight tracks that /// are contained to less than p_trans_max which is presumably /// chosen based on a known θ. // Loop over several values for p_trans and calculate the // chisq for each. double min_chisq=1.0E6; double min_x0=0.0, min_y0=0.0, min_r0=0.0; for(double my_p_trans=ptrans_step; my_p_trans<=ptrans_max; my_p_trans+=ptrans_step){ r0 = my_p_trans/(0.003*2.0); double alpha, my_chisq; // q = +1 alpha = phi + M_PI_2; x0 = r0*cos(alpha); y0 = r0*sin(alpha); my_chisq = ChisqCircle(); if(my_chisqx; double y = hits[i]->y; double R2 = x*x + y*y; if(R2>R2max){ R2max = R2; hit_max = hits[i]; } } // Bullet proof if(!hit_max)return; // Find hit closest to half-way out double Rmid = 0.0; double Rmax = sqrt(R2max); DHFHit_t *hit_mid = NULL; for(unsigned int i=0; ix; double y = hits[i]->y; double R = sqrt(x*x + y*y); if(fabs(R-Rmax/2.0) < fabs(Rmid-Rmax/2.0)){ Rmid = R; hit_mid = hits[i]; } } // Bullet proof if(!hit_mid)return; // Calculate p_trans from 3 points double x1 = hit_mid->x; double y1 = hit_mid->y; double x2 = hit_max->x; double y2 = hit_max->y; double r2 = sqrt(x2*x2 + y2*y2); double cos_phi = x2/r2; double sin_phi = y2/r2; double u1 = x1*cos_phi + y1*sin_phi; double v1 = -x1*sin_phi + y1*cos_phi; double u2 = x2*cos_phi + y2*sin_phi; double u0 = u2/2.0; double v0 = (u1*u1 + v1*v1 - u1*u2)/(2.0*v1); x0 = u0*cos_phi - v0*sin_phi; y0 = u0*sin_phi + v0*cos_phi; r0 = sqrt(x0*x0 + y0*y0); double B=-2.0; p_trans = fabs(0.003*B*r0); q = v1>0.0 ? -1.0:+1.0; } //----------------- // GuessChargeFromCircleFit //----------------- jerror_t DHelicalFit::GuessChargeFromCircleFit(void) { /// Adjust the sign of the charge (magnitude will stay 1) based on /// whether the hits tend to be to the right or to the left of the /// line going from the origin through the center of the circle. /// If the sign is flipped, the phi angle will also be shifted by /// +/- pi since the majority of hits are assumed to come from /// outgoing tracks. /// /// This is just a guess since tracks can bend all the way /// around and have hits that look exactly like tracks from an /// outgoing particle of opposite charge. The final charge should /// come from the sign of the dphi/dz slope. // Simply count the number of hits whose phi angle relative to the // phi of the center of the circle are greater than pi. unsigned int N=0; for(unsigned int i=0; ix; double y = hits[i]->y; if((x*y0 - y*x0) < 0.0)N++; } // Check if more hits are negative and make sign negative if so. if(N>hits.size()/2.0){ q = -1.0; phi += M_PI; if(phi>2.0*M_PI)phi-=2.0*M_PI; } return NOERROR; } //----------------- // FitTrack //----------------- jerror_t DHelicalFit::FitTrack(void) { /// Find theta, sign of electric charge, total momentum and /// vertex z position. // Points must be in order of increasing Z sort(hits.begin(), hits.end(), DHFHitLessThanZ_C); // Fit to circle to get circle's center FitCircle(); // The thing that is really needed is dphi/dz (where phi is the angle // of the point as measured from the center of the circle, not the beam // line). The relation between phi and z is linear so we use linear // regression to find the slope (dphi/dz). The one complication is // that phi is periodic so the value obtained via the x and y of a // specific point can be off by an integral number of 2pis. Handle this // by assuming the first point is measured before a full rotation // has occurred. Subsequent points should always be within 2pi of // the previous point so we just need to calculate the relative phi // between succesive points and keep a running sum. We do this in // the first loop were we find the mean z and phi values. The regression // formulae are calculated in the second loop. // Calculate phi about circle center for each hit Fill_phi_circle(hits, x0, y0); // Linear regression for z/phi relation float Sxx=0.0, Syy=0.0, Sxy=0.0; for(unsigned int i=0;iz - z_mean; float deltaPhi = a->phi_circle - phi_mean; Syy += deltaZ*deltaZ; Sxx += deltaPhi*deltaPhi; Sxy += deltaZ*deltaPhi; //cout<<__FILE__<<":"<<__LINE__<<" deltaZ="<z_vertex = z_vertex; // Calculate phi about circle center for each hit Fill_phi_circle(hits, x0, y0); // Do linear regression on phi-Z float Sx=0, Sy=0; float Sxx=0, Syy=0, Sxy = 0; float r0 = sqrt(x0*x0 + y0*y0); for(unsigned int i=0; iz - z_vertex; float dphi = a->phi_circle; Sx += dz; Sy += r0*dphi; Syy += r0*dphi*r0*dphi; Sxx += dz*dz; Sxy += r0*dphi*dz; } float k = (Syy-Sxx)/(2.0*Sxy); float s = sqrt(k*k + 1.0); float cot_theta1 = -k+s; float cot_theta2 = -k-s; float cot_theta_lin = Sx/Sy; float cot_theta; if(fabs(cot_theta_lin-cot_theta1) < fabs(cot_theta_lin-cot_theta2)){ cot_theta = cot_theta1; }else{ cot_theta = cot_theta2; } dzdphi = r0*cot_theta; // Fill in the rest of the paramters return FillTrackParams(); } //------------------------------------------------------------------ // Fill_phi_circle //------------------------------------------------------------------ jerror_t DHelicalFit::Fill_phi_circle(vector hits, float x0, float y0) { float x_last = -x0; float y_last = -y0; float phi_last = 0.0; z_mean = phi_mean = 0.0; for(unsigned int i=0; ix - x0; float dy = a->y - y0; float dphi = atan2f(dx*y_last - dy*x_last, dx*x_last + dy*y_last); float my_phi = phi_last +dphi; a->phi_circle = my_phi; z_mean += a->z; phi_mean += my_phi; x_last = dx; y_last = dy; phi_last = my_phi; } z_mean /= (float)hits.size(); phi_mean /= (float)hits.size(); return NOERROR; } //------------------------------------------------------------------ // FillTrackParams //------------------------------------------------------------------ jerror_t DHelicalFit::FillTrackParams(void) { /// Fill in and tweak some parameters like q, phi, theta using /// other values already set in the class. This is used by /// both FitTrack() and FitTrack_FixedZvertex(). float r0 = sqrt(x0*x0 + y0*y0); theta = atan(r0/fabs(dzdphi)); // The sign of the electric charge will be opposite that // of dphi/dz. Also, the value of phi will be PI out of phase if(dzdphi<0.0){ phi += M_PI; if(phi<0)phi+=2.0*M_PI; if(phi>=2.0*M_PI)phi-=2.0*M_PI; }else{ q = -q; } // Re-calculate chi-sq (needs to be done) chisq_source = TRACK; // Up to now, the fit has assumed a forward going particle. In // other words, if the particle is going backwards, the helix does // actually still go through the points, but only if extended // backward in time. We use the average z of the hits compared // to the reconstructed vertex to determine if it was back-scattered. if(z_mean=2.0*M_PI)phi-=2.0*M_PI; q = -q; } // There is a problem with theta for data generated with a uniform // field. The following factor is emprical until I can figure out // what the source of the descrepancy is. //theta += 0.1*pow((double)sin(theta),2.0); p = fabs(p_trans/sin(theta)); return NOERROR; } //------------------------------------------------------------------ // Print //------------------------------------------------------------------ jerror_t DHelicalFit::Print(void) const { cout<<"-- DHelicalFit Params ---------------"<