// $Id: smear.cc 3503 2008-03-18 14:33:04Z staylor $ // // Created June 22, 2005 David Lawrence #include #include #include using namespace std; #include #include "HDDM/hddm_s.h" float RANDOM_MAX = (float)(0x7FFFFFFF); #define _DBG_ cout<<__FILE__<<":"<<__LINE__<<" " #define _DBG__ cout<<__FILE__<<":"<<__LINE__< NCDC_STRAWS; vector CDC_RING_RADIUS; bool FDC_GEOMETRY_INITIALIZED = false; unsigned int NFDC_WIRES_PER_PLANE; vector FDC_LAYER_Z; double FDC_RATE_COEFFICIENT; double SampleGaussian(double sigma); double SampleRange(double x1, double x2); // Do we or do we not add noise hits bool ADD_NOISE = true; // Do we or do we not smear real hits bool SMEAR_HITS = true; // The error on the drift time in the CDC. The drift times // for the actual CDC hits coming from the input file // are smeared by a gaussian with this sigma. double CDC_TDRIFT_SIGMA = 150.0/55.0*1E-9; // in seconds // The time window for which CDC hits are accumulated. // This is used to determine the number of background // hits in the CDC for a given event. double CDC_TIME_WINDOW = 1000.0E-9; // in seconds // The error on the drift time in the CDC. The drift times // for the actual CDC hits coming from the input file // are smeared by a gaussian with this sigma. double FDC_TDRIFT_SIGMA = 200.0/55.0*1.0E-9; // in seconds // The error in the distance along the wire as measured by // the cathodes. This should NOT include the Lorentz // effect which is already included in hdgeant. It // should include any fluctuations due to ion trail density // etc. double FDC_CATHODE_SIGMA = 150.0; // in microns // The FDC pedestal noise is used to smear the cathode ADC // values such that the position along the wire has the resolution // specified by FDC_CATHODE_SIGMA. double FDC_PED_NOISE; //pC (calculated from FDC_CATHODE_SIGMA in SmearFDC) // Time window for acceptance of FDC hits double FDC_TIME_WINDOW = 1000.0E-9; // in seconds //----------- // Smear //----------- void Smear(s_HDDM_t *hddm_s) { if(SMEAR_HITS)SmearCDC(hddm_s); if(ADD_NOISE)AddNoiseHitsCDC(hddm_s); if(SMEAR_HITS)SmearFDC(hddm_s); if(ADD_NOISE)AddNoiseHitsFDC(hddm_s); if(SMEAR_HITS)SmearFCAL(hddm_s); if(SMEAR_HITS)SmearBCAL(hddm_s); if(SMEAR_HITS)SmearTOF(hddm_s); if(SMEAR_HITS)SmearUPV(hddm_s); if(SMEAR_HITS)SmearCherenkov(hddm_s); } //----------- // SmearCDC //----------- void SmearCDC(s_HDDM_t *hddm_s) { /// Smear the drift times of all CDC hits. // Acquire the pointer to the physics events s_PhysicsEvents_t* allEvents = hddm_s->physicsEvents; if(!allEvents)return; for (unsigned int m=0; m < allEvents->mult; m++) { // Acquire the pointer to the overall hits section of the data s_HitView_t *hits = allEvents->in[m].hitView; if (hits == HDDM_NULL)return; if (hits->centralDC == HDDM_NULL)return; if (hits->centralDC->cdcStraws == HDDM_NULL)return; for(unsigned int k=0; kcentralDC->cdcStraws->mult; k++){ s_CdcStraw_t *cdcstraw = &hits->centralDC->cdcStraws->in[k]; for(unsigned int j=0; jcdcStrawHits->mult; j++){ s_CdcStrawHit_t *strawhit = &cdcstraw->cdcStrawHits->in[j]; // Smear out the CDC drift time using the specified sigma. // This should include both timing resolution and ion trail // density effects. double delta_t = SampleGaussian(CDC_TDRIFT_SIGMA)*1.0E9; // delta_t is in ns strawhit->t += delta_t; // If the time is negative, reject this smear and try again //if(strawhit->t<0)j--; } } } } //----------- // AddNoiseHitsCDC //----------- void AddNoiseHitsCDC(s_HDDM_t *hddm_s) { if(!CDC_GEOMETRY_INITIALIZED)InitCDCGeometry(); // Calculate the number of noise hits for each straw and store // them in a sparse map. We must do it this way since we have to know // the total number of CdcStraw_t structures to allocate in our // call to make_s_CdcStraws. // // The straw rates are obtained using a parameterization done // to calculate the event size for the August 29, 2007 online // meeting. This parameterization is almost already obsolete. // 10/12/2007 D. L. vector Nstraw_hits; vector straw_number; vector ring_number; int Nnoise_straws = 0; int Nnoise_hits = 0; for(unsigned int ring=1; ring<=NCDC_STRAWS.size(); ring++){ double p[2] = {10.4705, -0.103046}; double r_prime = (double)(ring+3); double N = exp(p[0] + r_prime*p[1]); N *= CDC_TIME_WINDOW; for(unsigned int straw=1; straw<=NCDC_STRAWS[ring-1]; straw++){ // Indivdual straw rates should be way less than 1/event so // we just use the rate as a probablity. double Nhits = SampleRange(0.0, 1.0)physicsEvents; if(!PE) return; for(unsigned int i=0; imult; i++){ s_HitView_t *hits = PE->in[i].hitView; if (hits == HDDM_NULL)continue; // If no CDC hits were produced by HDGeant, then we need to add // the branches needed to the HDDM tree if(hits->centralDC == HDDM_NULL){ hits->centralDC = make_s_CentralDC(); hits->centralDC->cdcStraws = (s_CdcStraws_t*)HDDM_NULL; hits->centralDC->cdcTruthPoints = (s_CdcTruthPoints_t*)HDDM_NULL; } if(hits->centralDC->cdcStraws == HDDM_NULL){ hits->centralDC->cdcStraws = make_s_CdcStraws(0); hits->centralDC->cdcStraws->mult=0; } // Get existing hits s_CdcStraws_t *old_cdcstraws = hits->centralDC->cdcStraws; unsigned int Nold = old_cdcstraws->mult; // Create CdcStraws structure that has enough slots for // both the real and noise hits. s_CdcStraws_t* cdcstraws = make_s_CdcStraws((unsigned int)Nnoise_straws + Nold); // Add real hits back in first cdcstraws->mult = 0; for(unsigned int j=0; jin[cdcstraws->mult++] = old_cdcstraws->in[j]; // We need to transfer ownership of the hits to the new cdcstraws // branch so they don't get deleted when old_cdcstraws is freed. s_CdcStraw_t *cdcstraw = &old_cdcstraws->in[j]; cdcstraw->cdcStrawHits = (s_CdcStrawHits_t *)HDDM_NULL; } // Delete memory used for old hits structure and // replace pointer in HDDM tree with ours free(old_cdcstraws); hits->centralDC->cdcStraws = cdcstraws; // Loop over straws with noise hits for(unsigned int j=0; jin[cdcstraws->mult++]; s_CdcStrawHits_t *strawhits = make_s_CdcStrawHits(Nstraw_hits[j]); cdcstraw->cdcStrawHits = strawhits; cdcstraw->ring = ring_number[j]; cdcstraw->straw = straw_number[j]; strawhits->mult = 0; for(int k=0; kin[strawhits->mult++]; strawhit->dE = 1.0; strawhit->t = SampleRange(-CDC_TIME_WINDOW/2.0, +CDC_TIME_WINDOW/2.0)*1.e9; } } } } //----------- // SmearFDC //----------- void SmearFDC(s_HDDM_t *hddm_s) { // Calculate ped noise level based on position resolution FDC_PED_NOISE=-0.004594+0.008711*FDC_CATHODE_SIGMA+0.000010*FDC_CATHODE_SIGMA*FDC_CATHODE_SIGMA; //pC // Loop over Physics Events s_PhysicsEvents_t* PE = hddm_s->physicsEvents; if(!PE) return; for(unsigned int i=0; imult; i++){ s_HitView_t *hits = PE->in[i].hitView; if (hits == HDDM_NULL || hits->forwardDC == HDDM_NULL || hits->forwardDC->fdcChambers == HDDM_NULL)continue; s_FdcChambers_t* fdcChambers = hits->forwardDC->fdcChambers; s_FdcChamber_t *fdcChamber = fdcChambers->in; for(unsigned int j=0; jmult; j++, fdcChamber++){ // Add pedestal noise to strip charge data s_FdcCathodeStrips_t *strips= fdcChamber->fdcCathodeStrips; if (strips!=HDDM_NULL){ s_FdcCathodeStrip_t *strip=strips->in; for (unsigned int k=0;kmult;k++,strip++){ s_FdcCathodeHits_t *hits=strip->fdcCathodeHits; if (hits==HDDM_NULL)continue; s_FdcCathodeHit_t *hit=hits->in; for (unsigned int s=0;smult;s++,hit++){ hit->q+=SampleGaussian(FDC_PED_NOISE); } } } // Add drift time varation to the anode data s_FdcAnodeWires_t *wires=fdcChamber->fdcAnodeWires; if (wires!=HDDM_NULL){ s_FdcAnodeWire_t *wire=wires->in; for (unsigned int k=0;kmult;k++,wire++){ s_FdcAnodeHits_t *hits=wire->fdcAnodeHits; if (hits==HDDM_NULL)continue; s_FdcAnodeHit_t *hit=hits->in; for (unsigned int s=0;smult;s++,hit++){ hit->t+=SampleGaussian(FDC_TDRIFT_SIGMA)*1.0E9; } } } } } } //----------- // AddNoiseHitsFDC //----------- void AddNoiseHitsFDC(s_HDDM_t *hddm_s) { if(!FDC_GEOMETRY_INITIALIZED)InitFDCGeometry(); // Calculate the number of noise hits for each FDC wire and store // them in a sparse map. We must do it this way since we have to know // the total number of s_FdcAnodeWire_t structures to allocate in our // call to make_s_FdcAnodeWires. // // We do this using the individual wire rates to calculate the probability // of the wire firing for a single event. For the FDC, we calculate the // wire rates as a function of both wire number (distance from beam line) // and layer (position in z). We want a roughly 1/r distribution in the // radial direction and a roughly exponential rise in rate in the // +z direction. // // The wire rates are obtained using a parameterization done // to calculate the event size for the August 29, 2007 online // meeting. This parameterization is almost already obsolete. // In rough terms, the layer rate (integrated over all wires) // is about 1 MHz. For a 24 layer chamber with a 1us time window, // we should have approximately 24 background hits per event. // 11/9/2007 D. L. vector Nwire_hits; vector wire_number; vector layer_number; int Nnoise_wires = 0; int Nnoise_hits = 0; for(unsigned int layer=1; layer<=FDC_LAYER_Z.size(); layer++){ double No = FDC_RATE_COEFFICIENT*exp((double)layer*log(4.0)/24.0); for(unsigned int wire=1; wire<=96; wire++){ double rwire = fabs(96.0/2.0 - (double)wire); double N = No*log((rwire+0.5)/(rwire-0.5)); // Indivdual wire rates should be way less than 1/event so // we just use the rate as a probablity. double Nhits = SampleRange(0.0, 1.0)physicsEvents; if(!PE) return; for(unsigned int i=0; imult; i++){ s_HitView_t *hits = PE->in[i].hitView; if (hits == HDDM_NULL)continue; // If no FDC hits were produced by HDGeant, then we need to add // the branches needed to the HDDM tree if(hits->forwardDC == HDDM_NULL){ hits->forwardDC = make_s_ForwardDC(); hits->forwardDC->fdcChambers = (s_FdcChambers_t*)HDDM_NULL; } if(hits->forwardDC->fdcChambers == HDDM_NULL){ hits->forwardDC->fdcChambers = make_s_FdcChambers(0); hits->forwardDC->fdcChambers->mult=0; } // Get existing hits s_FdcChambers_t *old_fdcchambers = hits->forwardDC->fdcChambers; unsigned int Nold = old_fdcchambers->mult; // If we were doing this "right" we'd conglomerate all of the noise // hits from the same chamber into the same s_FdcChamber_t structure. // That's a pain in the butt and really may only save a tiny bit of disk // space so we just add each noise hit back in as another chamber // structure. // Create FdcChambers structure that has enough slots for // both the real and noise hits. s_FdcChambers_t* fdcchambers = make_s_FdcChambers(Nwire_hits.size() + Nold); // Add real hits back in first fdcchambers->mult = 0; for(unsigned int j=0; jin[fdcchambers->mult++] = old_fdcchambers->in[j]; // We need to transfer ownership of the hits to the new fdcchambers // branch so they don't get deleted when old_fdcchambers is freed. s_FdcChamber_t *fdcchamber = &old_fdcchambers->in[j]; fdcchamber->fdcAnodeWires = (s_FdcAnodeWires_t *)HDDM_NULL; fdcchamber->fdcCathodeStrips = (s_FdcCathodeStrips_t *)HDDM_NULL; } // Delete memory used for old hits structure and // replace pointer in HDDM tree with ours free(old_fdcchambers); hits->forwardDC->fdcChambers = fdcchambers; // Loop over wires with noise hits for(unsigned int j=0; jin[fdcchambers->mult++]; // Create structure for anode wires s_FdcAnodeWires_t *fdcAnodeWires = make_s_FdcAnodeWires(Nwire_hits[j]); fdcchamber->fdcAnodeWires = fdcAnodeWires; fdcAnodeWires->mult = 0; for(int k=0; kin[fdcAnodeWires->mult++]; // Create anode hits structure s_FdcAnodeHits_t *fdcanodehits = make_s_FdcAnodeHits(1); fdcAnodeWire->fdcAnodeHits = fdcanodehits; // Get pointer to anode hit structure fdcanodehits->mult = 1; s_FdcAnodeHit_t *fdcanodehit = &fdcanodehits->in[0]; fdcanodehit->dE = 0.1; // what should this be? fdcanodehit->t = SampleRange(-FDC_TIME_WINDOW/2., +FDC_TIME_WINDOW/2.)*1.e9; fdcAnodeWire->wire = wire_number[j]; fdcchamber->layer = (layer_number[j]-1)%3 + 1; fdcchamber->module = (layer_number[j]-1)/3 + 1; } } } } //----------- // SmearFCAL //----------- void SmearFCAL(s_HDDM_t *hddm_s) { } //----------- // SmearBCAL //----------- void SmearBCAL(s_HDDM_t *hddm_s) { } //----------- // SmearTOF //----------- void SmearTOF(s_HDDM_t *hddm_s) { } //----------- // SmearUPV //----------- void SmearUPV(s_HDDM_t *hddm_s) { } //----------- // SmearCherenkov //----------- void SmearCherenkov(s_HDDM_t *hddm_s) { } //----------- // InitCDCGeometry //----------- void InitCDCGeometry(void) { CDC_GEOMETRY_INITIALIZED = true; CDC_MAX_RINGS = 25; //-- This was cut and pasted from DCDCTrackHit_factory.cc on 10/11/2007 -- float degrees0 = 0.0; float degrees6 = 6.0*M_PI/180.0; for(int ring=1; ring<=CDC_MAX_RINGS; ring++){ int myNstraws=0; float radius = 0.0; float stereo=0.0; switch(ring){ case 1: myNstraws= 43; radius= 10.960; stereo= degrees0; break; case 2: myNstraws= 50; radius= 12.741; stereo= degrees0; break; case 3: myNstraws= 57; radius= 14.522; stereo= degrees0; break; case 4: myNstraws= 64; radius= 16.304; stereo= -degrees6; break; case 5: myNstraws= 71; radius= 18.086; stereo= -degrees6; break; case 6: myNstraws= 78; radius= 19.868; stereo= +degrees6; break; case 7: myNstraws= 85; radius= 21.65 ; stereo= +degrees6; break; case 8: myNstraws= 99; radius= 25.214; stereo= degrees0; break; case 9: myNstraws= 106; radius= 26.997; stereo= degrees0; break; case 10: myNstraws= 113; radius= 28.779; stereo= degrees0; break; case 11: myNstraws= 120; radius= 30.561; stereo= degrees0; break; case 12: myNstraws= 127; radius= 32.344; stereo= degrees0; break; case 13: myNstraws= 134; radius= 34.126; stereo= -degrees6; break; case 14: myNstraws= 141; radius= 35.908; stereo= -degrees6; break; case 15: myNstraws= 148; radius= 37.691; stereo= +degrees6; break; case 16: myNstraws= 155; radius= 39.473; stereo= +degrees6; break; case 17: myNstraws= 166; radius= 42.274; stereo= degrees0; break; case 18: myNstraws= 173; radius= 44.057; stereo= degrees0; break; case 19: myNstraws= 180; radius= 45.839; stereo= degrees0; break; case 20: myNstraws= 187; radius= 47.621; stereo= degrees0; break; case 21: myNstraws= 194; radius= 49.404; stereo= degrees0; break; case 22: myNstraws= 201; radius= 51.186; stereo= degrees0; break; case 23: myNstraws= 208; radius= 52.969; stereo= degrees0; break; case 24: myNstraws= 215; radius= 54.751; stereo= degrees0; break; case 25: myNstraws= 222; radius= 56.534; stereo= degrees0; break; default: cerr<<__FILE__<<":"<<__LINE__<<" Invalid value for CDC ring ("<