// $Id: smear.cc 10157 2012-12-18 14:40:27Z davidl $ // // Created June 22, 2005 David Lawrence #define JANA_ENABLED 1 #include #include #include using namespace std; #include #include #include #include #include "units.h" #include "HDDM/hddm_s.h" #include #include #include "DRandom2.h" #ifndef _DBG_ #define _DBG_ cout<<__FILE__<<":"<<__LINE__<<" " #define _DBG__ cout<<__FILE__<<":"<<__LINE__< >fdc_smear_parms; extern TH2F *fdc_drift_time_smear_hist; extern TH2F *fdc_drift_dist_smear_hist; extern TH2F *fdc_drift_time; extern TH1F *fdc_cathode_charge; extern TH2F *cdc_drift_time; extern TH1F *cdc_charge; extern TH1F *fdc_anode_mult; extern TH2F *cdc_drift_smear; void GetAndSetSeeds(s_HDDM_t *hddm_s); void SmearCDC(s_HDDM_t *hddm_s); void AddNoiseHitsCDC(s_HDDM_t *hddm_s); void SmearFDC(s_HDDM_t *hddm_s); void AddNoiseHitsFDC(s_HDDM_t *hddm_s); void SmearFCAL(s_HDDM_t *hddm_s); void SmearCCAL(s_HDDM_t *hddm_s); void SmearBCAL(s_HDDM_t *hddm_s); void SmearTOF(s_HDDM_t *hddm_s); void SmearSTC(s_HDDM_t *hddm_s); void SmearCherenkov(s_HDDM_t *hddm_s); void InitCDCGeometry(void); void InitFDCGeometry(void); pthread_mutex_t mutex_fdc_smear_function = PTHREAD_MUTEX_INITIALIZER; bool CDC_GEOMETRY_INITIALIZED = false; int CDC_MAX_RINGS=0; extern vector NCDC_STRAWS; extern vector CDC_RING_RADIUS; DFCALGeometry *fcalGeom = NULL; DCCALGeometry *ccalGeom = NULL; bool FDC_GEOMETRY_INITIALIZED = false; unsigned int NFDC_WIRES_PER_PLANE; extern vector FDC_LAYER_Z; extern double FDC_RATE_COEFFICIENT; double SampleGaussian(double sigma); double SamplePoisson(double lambda); double SampleRange(double x1, double x2); // Do we or do we not add noise hits extern bool ADD_NOISE; // Do we or do we not smear real hits extern bool SMEAR_HITS; // Use or ignore random number seeds found in HDDM file extern bool IGNORE_SEEDS; // The error on the drift time in the CDC. The drift times // for the actual CDC hits coming from the input file // are smeared by a gaussian with this sigma. extern double CDC_TDRIFT_SIGMA; // The time window for which CDC hits are accumulated. // This is used to determine the number of background // hits in the CDC for a given event. extern double CDC_TIME_WINDOW; // The error in the energy deposition measurement in the CDC due to pedestal noise extern double CDC_PEDESTAL_SIGMA; // Number of sigmas above threshold for sparcification of CDC data extern double CDC_THRESHOLD_FACTOR; // If the following flag is true, then include the drift-distance // dependency on the error in the FDC position. Otherwise, use a // flat distribution given by the FDC_TDRIFT_SIGMA below. extern bool FDC_USE_PARAMETERIZED_SIGMA; // The error on the drift time in the FDC. The drift times // for the actual FDC hits coming from the input file // are smeared by a gaussian with this sigma. extern double FDC_TDRIFT_SIGMA; // The error in the distance along the wire as measured by // the cathodes. This should NOT include the Lorentz // effect which is already included in hdgeant. It // should include any fluctuations due to ion trail density // etc. extern double FDC_CATHODE_SIGMA; // The FDC pedestal noise is used to smear the cathode ADC // values such that the position along the wire has the resolution // specified by FDC_CATHODE_SIGMA. extern double FDC_PED_NOISE; //pC (calculated from FDC_CATHODE_SIGMA in SmearFDC) // Number of sigmas above threshold for sparcification of FDC data extern double FDC_THRESHOLD_FACTOR; // If energy loss was turned off in the FDC then the pedestal // noise will not be scaled properly to give the nominal 200 micron // resolution along the wires. This flag is used to indicated // the magic scale factor should be applied to FDC_PED_NOISE // when it is calculated below to get the correct resolution. extern bool FDC_ELOSS_OFF; // Time window for acceptance of FDC hits extern double FDC_TIME_WINDOW; // Fraction of FDC hits to randomly drop (0=drop nothing 1=drop everything) extern double FDC_HIT_DROP_FRACTION; // FDC discriminator threshold in keV extern double FDC_THRESH_KEV; // Photon-statistics factor for smearing hit energy (from Criss's MC) // (copied from DFCALMCResponse_factory.cc 7/2/2009 DL) extern double FCAL_PHOT_STAT_COEF; // Single block energy threshold (applied after smearing) extern double FCAL_BLOCK_THRESHOLD; // Photon-statistics factor for smearing hit energy for CompCal // (This is just a rough estimate 11/30/2010 DL) double CCAL_PHOT_STAT_COEF = 0.035/2.0; // Single block energy threshold (applied after smearing) // (This is just a rough estimate 11/30/2010 DL) double CCAL_BLOCK_THRESHOLD = 20.0*k_MeV; // Forward TOF resolution extern double TOF_SIGMA; extern double TOF_PHOTONS_PERMEV; // Start counter resolution extern double START_SIGMA ; extern double START_PHOTONS_PERMEV; extern bool SMEAR_BCAL; // Beginning of readout window extern double TRIGGER_LOOKBACK_TIME; extern bool DROP_TRUTH_HITS; // Polynomial interpolation on a grid. // Adapted from Numerical Recipes in C (2nd Edition), pp. 121-122. void polint(float *xa, float *ya,int n,float x, float *y,float *dy){ int i,m,ns=0; float den,dif,dift,ho,hp,w; float *c=(float *)calloc(n,sizeof(float)); float *d=(float *)calloc(n,sizeof(float)); dif=fabs(x-xa[0]); for (i=0;i> seed1 >> seed2 >> seed3; UInt_t *useed1 = reinterpret_cast(&seed1); UInt_t *useed2 = reinterpret_cast(&seed2); UInt_t *useed3 = reinterpret_cast(&seed3); gDRandom.SetSeeds(*useed1, *useed2, *useed3); cout << "Seeds set from command line. Any random number" << endl; cout << "seeds found in the input file will be ignored!" << endl; IGNORE_SEEDS = true; } //----------- // GetAndSetSeeds //----------- void GetAndSetSeeds(s_HDDM_t *hddm_s) { // Check if a non-zero seed for mcsmear exists in the input // HDDM file. If so, use it to set the seeds for the random number // generator. Then, make sure the seeds that are used are stored // in the output event. if(hddm_s == NULL)return; if(hddm_s->physicsEvents == NULL || hddm_s->physicsEvents==HDDM_NULL)return; if(hddm_s->physicsEvents->mult<1)return; s_PhysicsEvent_t *pe = &hddm_s->physicsEvents->in[0]; if(pe->reactions == NULL || pe->reactions==HDDM_NULL)return; if(pe->reactions->mult<1)return; s_Random_t *my_rand = pe->reactions->in[0].random; UInt_t seed1, seed2, seed3; if(my_rand == NULL || my_rand==HDDM_NULL){ // No seeds stored in event. Add them my_rand = pe->reactions->in[0].random = make_s_Random(); }else{ if(!IGNORE_SEEDS){ // Copy seeds from file to local variables seed1 = *((UInt_t*)&my_rand->seed_mcsmear1); seed2 = *((UInt_t*)&my_rand->seed_mcsmear2); seed3 = *((UInt_t*)&my_rand->seed_mcsmear3); // Set the seeds in the random generator with those found // in the file, but ONLY if they are not all zeros if((seed1+seed2+seed3) != 0)gDRandom.SetSeeds(seed1, seed2, seed3); } } // Copy seeds from generator to local variables gDRandom.GetSeeds(seed1, seed2, seed3); // Copy seeds from local variables to HDDM file my_rand->seed_mcsmear1 = *((Int_t*)&seed1); my_rand->seed_mcsmear2 = *((Int_t*)&seed2); my_rand->seed_mcsmear3 = *((Int_t*)&seed3); } //----------- // SmearCDC //----------- void SmearCDC(s_HDDM_t *hddm_s) { /// Smear the drift times of all CDC hits. /// This will add cdcStrawHit objects generated by smearing values in the /// cdcStrawTruthHit objects that hdgeant outputs. Any existing cdcStrawHit /// objects will be replaced. // Acquire the pointer to the physics events s_PhysicsEvents_t* allEvents = hddm_s->physicsEvents; if(!allEvents)return; double t_max=TRIGGER_LOOKBACK_TIME+CDC_TIME_WINDOW; double threshold=CDC_THRESHOLD_FACTOR*CDC_PEDESTAL_SIGMA; // for sparcification for (unsigned int m=0; m < allEvents->mult; m++) { // Acquire the pointer to the overall hits section of the data s_HitView_t *hits = allEvents->in[m].hitView; if (hits == HDDM_NULL)return; if (hits->centralDC == HDDM_NULL)return; if (hits->centralDC->cdcStraws == HDDM_NULL)return; for(unsigned int k=0; kcentralDC->cdcStraws->mult; k++){ s_CdcStraw_t *cdcstraw = &hits->centralDC->cdcStraws->in[k]; // If the event already contains a s_CdcStrawHits_t object then free it. if(cdcstraw->cdcStrawHits!=HDDM_NULL){ static bool warned = false; FREE(cdcstraw->cdcStrawHits); if(!warned){ warned = true; cerr<cdcStrawHits = make_s_CdcStrawHits(cdcstraw->cdcStrawTruthHits->mult); unsigned int mult=0; for(unsigned int j=0; jcdcStrawTruthHits->mult; j++){ s_CdcStrawTruthHit_t *strawtruthhit = &cdcstraw->cdcStrawTruthHits->in[j]; // Pedestal-smeared charge double q=strawtruthhit->q+SampleGaussian(CDC_PEDESTAL_SIGMA); double sigma_t = CDC_TDRIFT_SIGMA; // Smear out the CDC drift time using the specified sigma. // This is for timing resolution from the electronics; diffusion is handled in hdgeant. double delta_t = SampleGaussian(sigma_t)*1.0E9; // delta_t is in ns double t = strawtruthhit->t + delta_t; s_CdcStrawHit_t *strawhit = &cdcstraw->cdcStrawHits->in[mult]; // Initialization strawhit->t=0.; strawhit->q=0.; strawhit->d = 0.; strawhit->itrack = strawtruthhit->itrack; strawhit->ptype = strawtruthhit->ptype; if (t>TRIGGER_LOOKBACK_TIME && tthreshold){ if (cdcstraw->ring==1){ double t_corr=t-0.33; cdc_drift_time->Fill(t_corr,strawtruthhit->d); cdc_drift_smear->Fill(t_corr, strawtruthhit->d-(0.0285*sqrt(t_corr)+0.014)); cdc_charge->Fill(q); } strawhit->t=t; strawhit->q=q; mult++; } else if (DROP_TRUTH_HITS==false) mult++; } cdcstraw->cdcStrawHits->mult = mult; if (DROP_TRUTH_HITS){ FREE(cdcstraw->cdcStrawTruthHits); cdcstraw->cdcStrawTruthHits=(s_CdcStrawTruthHits_t *)HDDM_NULL; if (mult==0){ FREE(cdcstraw->cdcStrawHits); cdcstraw->cdcStrawHits=(s_CdcStrawHits_t *)HDDM_NULL; } } } if (DROP_TRUTH_HITS){ unsigned int mult=0; for (unsigned int k=0;kcentralDC->cdcStraws->mult;k++){ s_CdcStraw_t *cdcstraw = &hits->centralDC->cdcStraws->in[k]; if (cdcstraw->cdcStrawHits!=HDDM_NULL){ hits->centralDC->cdcStraws->in[mult]=hits->centralDC->cdcStraws->in[k]; mult++; } } hits->centralDC->cdcStraws->mult=mult; } } } //----------- // AddNoiseHitsCDC //----------- void AddNoiseHitsCDC(s_HDDM_t *hddm_s) { #if ! JANA_ENABLED if(!CDC_GEOMETRY_INITIALIZED)InitCDCGeometry(); #endif // Calculate the number of noise hits for each straw and store // them in a sparse map. We must do it this way since we have to know // the total number of CdcStraw_t structures to allocate in our // call to make_s_CdcStraws. // // The straw rates are obtained using a parameterization done // to calculate the event size for the August 29, 2007 online // meeting. This parameterization is almost already obsolete. // 10/12/2007 D. L. vector Nstraw_hits; vector straw_number; vector ring_number; int Nnoise_straws = 0; int Nnoise_hits = 0; for(unsigned int ring=1; ring<=NCDC_STRAWS.size(); ring++){ double p[2] = {10.4705, -0.103046}; double r_prime = (double)(ring+3); double N = exp(p[0] + r_prime*p[1]); N *= CDC_TIME_WINDOW; for(unsigned int straw=1; straw<=NCDC_STRAWS[ring-1]; straw++){ // Indivdual straw rates should be way less than 1/event so // we just use the rate as a probablity. double Nhits = SampleRange(0.0, 1.0)physicsEvents; if(!PE) return; double t_max=TRIGGER_LOOKBACK_TIME+CDC_TIME_WINDOW; double threshold=CDC_THRESHOLD_FACTOR*CDC_PEDESTAL_SIGMA; // for sparcification for(unsigned int i=0; imult; i++){ s_HitView_t *hits = PE->in[i].hitView; if (hits == HDDM_NULL)continue; // If no CDC hits were produced by HDGeant, then we need to add // the branches needed to the HDDM tree if(hits->centralDC == HDDM_NULL){ hits->centralDC = make_s_CentralDC(); hits->centralDC->cdcStraws = (s_CdcStraws_t*)HDDM_NULL; hits->centralDC->cdcTruthPoints = (s_CdcTruthPoints_t*)HDDM_NULL; } if(hits->centralDC->cdcStraws == HDDM_NULL){ hits->centralDC->cdcStraws = make_s_CdcStraws(0); hits->centralDC->cdcStraws->mult=0; } // Get existing hits s_CdcStraws_t *old_cdcstraws = hits->centralDC->cdcStraws; unsigned int Nold = old_cdcstraws->mult; // Create CdcStraws structure that has enough slots for // both the real and noise hits. s_CdcStraws_t* cdcstraws = make_s_CdcStraws((unsigned int)Nnoise_straws + Nold); // Add real hits back in first cdcstraws->mult = 0; for(unsigned int j=0; jin[cdcstraws->mult++] = old_cdcstraws->in[j]; // We need to transfer ownership of the hits to the new cdcstraws // branch so they don't get deleted when old_cdcstraws is freed. s_CdcStraw_t *cdcstraw = &old_cdcstraws->in[j]; cdcstraw->cdcStrawHits = (s_CdcStrawHits_t *)HDDM_NULL; } // Delete memory used for old hits structure and // replace pointer in HDDM tree with ours free(old_cdcstraws); hits->centralDC->cdcStraws = cdcstraws; // Loop over straws with noise hits for(unsigned int j=0; jin[cdcstraws->mult++]; s_CdcStrawHits_t *strawhits = make_s_CdcStrawHits(Nstraw_hits[j]); cdcstraw->cdcStrawHits = strawhits; cdcstraw->ring = ring_number[j]; cdcstraw->straw = straw_number[j]; strawhits->mult = 0; for(int k=0; kthreshold){ s_CdcStrawHit_t *strawhit = &strawhits->in[strawhits->mult++]; strawhit->q=q; strawhit->t = SampleRange(TRIGGER_LOOKBACK_TIME,t_max); strawhit->d = 0.; // be consistent to initialize d=DOCA to zero cdc_charge->Fill(strawhit->q); cdc_drift_time->Fill(strawhit->t,strawhit->d); } } } } } //----------- // SmearFDC //----------- void SmearFDC(s_HDDM_t *hddm_s) { // Loop over Physics Events s_PhysicsEvents_t* PE = hddm_s->physicsEvents; if(!PE) return; // Calculate ped noise level based on position resolution // FDC_PED_NOISE=-0.004594+0.008711*FDC_CATHODE_SIGMA+0.000010*FDC_CATHODE_SIGMA*FDC_CATHODE_SIGMA; //pC FDC_PED_NOISE=-0.0938+0.0485*FDC_CATHODE_SIGMA; if(FDC_ELOSS_OFF)FDC_PED_NOISE*=7.0; // empirical 4/29/2009 DL double t_max=TRIGGER_LOOKBACK_TIME+FDC_TIME_WINDOW; double threshold=FDC_THRESHOLD_FACTOR*FDC_PED_NOISE; // for sparcification for(unsigned int i=0; imult; i++){ s_HitView_t *hits = PE->in[i].hitView; if (hits == HDDM_NULL || hits->forwardDC == HDDM_NULL || hits->forwardDC->fdcChambers == HDDM_NULL)continue; s_FdcChambers_t* fdcChambers = hits->forwardDC->fdcChambers; s_FdcChamber_t *fdcChamber = fdcChambers->in; for(unsigned int j=0; jmult; j++, fdcChamber++){ // Add pedestal noise to strip charge data s_FdcCathodeStrips_t *strips= fdcChamber->fdcCathodeStrips; if (strips!=HDDM_NULL){ for (unsigned int k=0;kmult;k++){ s_FdcCathodeStrip_t *strip=&strips->in[k]; // If a s_FdcCathodeHits_t object already exists delete it if(strip->fdcCathodeHits!=HDDM_NULL){ FREE(strip->fdcCathodeHits); strip->fdcCathodeHits = (s_FdcCathodeHits_t*)HDDM_NULL; } s_FdcCathodeTruthHits_t *truthhits=strip->fdcCathodeTruthHits; if (truthhits==HDDM_NULL)continue; // Allocate s_FdcCathodeHits_t objects corresponding to this s_FdcCathodeTruthHits_t s_FdcCathodeHits_t *hits = strip->fdcCathodeHits = make_s_FdcCathodeHits(truthhits->mult); s_FdcCathodeHit_t *hit=hits->in; s_FdcCathodeTruthHit_t *truthhit=truthhits->in; unsigned int mult=0; for (unsigned int s=0;smult;s++,truthhit++){ //if(SampleRange(0.0, 1.0)<=FDC_HIT_DROP_FRACTION) continue; double q= truthhit->q + SampleGaussian(FDC_PED_NOISE); double t= truthhit->t + SampleGaussian(FDC_TDRIFT_SIGMA)*1.0E9; //initialization hit->q=0.; hit->t=0.; hit->ptype=truthhit->ptype; hit->itrack=truthhit->itrack; if (q>threshold && t>TRIGGER_LOOKBACK_TIME && tq = q; hit->t = t; mult++; hit++; fdc_cathode_charge->Fill(q); } else if (DROP_TRUTH_HITS==false) mult++; } hits->mult=mult; if (DROP_TRUTH_HITS){ FREE(strip->fdcCathodeTruthHits); strip->fdcCathodeTruthHits=(s_FdcCathodeTruthHits_t*)HDDM_NULL; if (hits->mult==0){ FREE(strip->fdcCathodeHits); strip->fdcCathodeHits=(s_FdcCathodeHits_t*)HDDM_NULL; } } } if (DROP_TRUTH_HITS){ unsigned int mult=0; for (unsigned int k=0;kmult;k++){ s_FdcCathodeStrip_t *strip=&strips->in[k]; if (strip->fdcCathodeHits!=HDDM_NULL){ strips->in[mult]=strips->in[k]; mult++; } } strips->mult=mult; } } // Add drift time varation to the anode data s_FdcAnodeWires_t *wires=fdcChamber->fdcAnodeWires; if (wires!=HDDM_NULL){ s_FdcAnodeWire_t *wire=wires->in; for (unsigned int k=0;kmult;k++,wire++){ // If a s_FdcAnodeHits_t object exists already delete it if(wire->fdcAnodeHits!=HDDM_NULL){ FREE(wire->fdcAnodeHits); wire->fdcAnodeHits = (s_FdcAnodeHits_t*)HDDM_NULL; } s_FdcAnodeTruthHits_t *truthhits=wire->fdcAnodeTruthHits; if (truthhits==HDDM_NULL)continue; // Allocate s_FdcAnodeHits_t object corresponding to this s_FdcAnodeTruthHits_t wire->fdcAnodeHits = make_s_FdcAnodeHits(truthhits->mult); unsigned int mult=0; for (unsigned int s=0;smult;s++){ s_FdcAnodeTruthHit_t *truthhit=&truthhits->in[s]; double t = truthhit->t + SampleGaussian(FDC_TDRIFT_SIGMA)*1.0E9; s_FdcAnodeHit_t *hit = &wire->fdcAnodeHits->in[mult]; // Initialize the hit data to zeros hit->t=0.; hit->dE=0.; hit->d=0.; hit->itrack = truthhit->itrack; hit->ptype = truthhit->ptype; if (t>TRIGGER_LOOKBACK_TIME && tt=t; hit->dE = truthhit->dE; mult++; if (fdcChamber->layer==1 && fdcChamber->module==1){ double dt=hit->t-truthhit->t_unsmeared-3.7; // 3.7 ns flight time for c=1 to first fdc plane fdc_drift_time_smear_hist->Fill(truthhit->d,dt); fdc_drift_dist_smear_hist->Fill(truthhit->d,dt*(0.5*0.02421/sqrt(truthhit->t_unsmeared)+5.09e-4)); fdc_drift_time->Fill(hit->t-3.7,truthhit->d); } } else if (DROP_TRUTH_HITS==false) mult++; } wire->fdcAnodeHits->mult=mult; fdc_anode_mult->Fill(mult); if (DROP_TRUTH_HITS){ FREE(wire->fdcAnodeTruthHits); wire->fdcAnodeTruthHits=(s_FdcAnodeTruthHits_t *)HDDM_NULL; if (mult==0){ FREE(wire->fdcAnodeHits); wire->fdcAnodeHits=(s_FdcAnodeHits_t*)HDDM_NULL; } } } if (DROP_TRUTH_HITS){ unsigned int mult=0; for (unsigned int k=0;kmult;k++){ s_FdcAnodeWire_t *wire=&wires->in[k]; if (wire->fdcAnodeHits!=HDDM_NULL){ wires->in[mult]=wires->in[k]; mult++; } } wires->mult=mult; } } } } } //----------- // AddNoiseHitsFDC //----------- void AddNoiseHitsFDC(s_HDDM_t *hddm_s) { #if ! JANA_ENABLED if(!FDC_GEOMETRY_INITIALIZED)InitFDCGeometry(); #endif // Calculate the number of noise hits for each FDC wire and store // them in a sparse map. We must do it this way since we have to know // the total number of s_FdcAnodeWire_t structures to allocate in our // call to make_s_FdcAnodeWires. // // We do this using the individual wire rates to calculate the probability // of the wire firing for a single event. For the FDC, we calculate the // wire rates as a function of both wire number (distance from beam line) // and layer (position in z). We want a roughly 1/r distribution in the // radial direction and a roughly exponential rise in rate in the // +z direction. // // The wire rates are obtained using a parameterization done // to calculate the event size for the August 29, 2007 online // meeting. This parameterization is almost already obsolete. // In rough terms, the layer rate (integrated over all wires) // is about 1 MHz. For a 24 layer chamber with a 1us time window, // we should have approximately 24 background hits per event. // 11/9/2007 D. L. vector Nwire_hits; vector Ncathode_hits; vector wire_number; vector layer_number; int Nnoise_wires = 0; int Nnoise_hits = 0; for(unsigned int layer=1; layer<=FDC_LAYER_Z.size(); layer++){ double No = FDC_RATE_COEFFICIENT*exp((double)layer*log(4.0)/24.0); for(unsigned int wire=1; wire<=96; wire++){ double rwire = fabs(96.0/2.0 - (double)wire); double N = No*log((rwire+0.5)/(rwire-0.5)); // Indivdual wire rates should be way less than 1/event so // we just use the rate as a probablity. double Nhits = SampleRange(0.0, 1.0)physicsEvents; if(!PE) return; double t_max=TRIGGER_LOOKBACK_TIME+FDC_TIME_WINDOW; // double threshold=FDC_THRESHOLD_FACTOR*FDC_PED_NOISE; // for sparcification for(unsigned int i=0; imult; i++){ s_HitView_t *hits = PE->in[i].hitView; if (hits == HDDM_NULL)continue; // If no FDC hits were produced by HDGeant, then we need to add // the branches needed to the HDDM tree if(hits->forwardDC == HDDM_NULL){ hits->forwardDC = make_s_ForwardDC(); hits->forwardDC->fdcChambers = (s_FdcChambers_t*)HDDM_NULL; } if(hits->forwardDC->fdcChambers == HDDM_NULL){ hits->forwardDC->fdcChambers = make_s_FdcChambers(0); hits->forwardDC->fdcChambers->mult=0; } // Get existing hits s_FdcChambers_t *old_fdcchambers = hits->forwardDC->fdcChambers; unsigned int Nold = old_fdcchambers->mult; // If we were doing this "right" we'd conglomerate all of the noise // hits from the same chamber into the same s_FdcChamber_t structure. // That's a pain in the butt and really may only save a tiny bit of disk // space so we just add each noise hit back in as another chamber // structure. // Create FdcChambers structure that has enough slots for // both the real and noise hits. s_FdcChambers_t* fdcchambers = make_s_FdcChambers(Nwire_hits.size() + Nold); // Add real hits back in first fdcchambers->mult = 0; for(unsigned int j=0; jin[fdcchambers->mult++] = old_fdcchambers->in[j]; // We need to transfer ownership of the hits to the new fdcchambers // branch so they don't get deleted when old_fdcchambers is freed. s_FdcChamber_t *fdcchamber = &old_fdcchambers->in[j]; fdcchamber->fdcAnodeWires = (s_FdcAnodeWires_t *)HDDM_NULL; fdcchamber->fdcCathodeStrips = (s_FdcCathodeStrips_t *)HDDM_NULL; } // Delete memory used for old hits structure and // replace pointer in HDDM tree with ours free(old_fdcchambers); hits->forwardDC->fdcChambers = fdcchambers; // Loop over wires with noise hits for(unsigned int j=0; jin[fdcchambers->mult++]; // Create structure for anode wires s_FdcAnodeWires_t *fdcAnodeWires = make_s_FdcAnodeWires(Nwire_hits[j]); fdcchamber->fdcAnodeWires = fdcAnodeWires; fdcAnodeWires->mult = 0; double dEsigma=FDC_THRESH_KEV/FDC_THRESHOLD_FACTOR; for(int k=0; kFDC_THRESH_KEV){ // Get pointer to anode wire structure s_FdcAnodeWire_t *fdcAnodeWire = &fdcAnodeWires->in[fdcAnodeWires->mult++]; // Create anode hits structure s_FdcAnodeHits_t *fdcanodehits = make_s_FdcAnodeHits(1); fdcAnodeWire->fdcAnodeHits = fdcanodehits; // Get pointer to anode hit structure fdcanodehits->mult = 1; s_FdcAnodeHit_t *fdcanodehit = &fdcanodehits->in[0]; fdcanodehit->dE = dE; // what should this be? fdcanodehit->t = SampleRange(TRIGGER_LOOKBACK_TIME,t_max); fdcanodehit->d = 0.; // d=DOCA initialize to avoid any NAN fdcAnodeWire->wire = wire_number[j]; fdcchamber->layer = (layer_number[j]-1)%3 + 1; fdcchamber->module = (layer_number[j]-1)/3 + 1; fdc_drift_time->Fill(fdcanodehit->t,0.); } } } } } //----------- // SmearFCAL //----------- void SmearFCAL(s_HDDM_t *hddm_s) { /// Smear the FCAL hits using the nominal resolution of the individual blocks. /// The way this works is a little funny and warrants a little explanation. /// The information coming from hdgeant is truth information indexed by /// row and column, but containing energy deposited and time. The mcsmear /// program will copy the truth information from the FcalTruthBlock to the /// FcalBlock branch, smearing the values with the appropriate detector /// resolution. /// /// To access the "truth" values in DANA, get the DFCALHit objects using the /// "TRUTH" tag. // The code below is perhaps slightly odd in that it simultaneously creates // and fills the mirror (truth) branch while smearing the values in the // nominal hit branch. // Loop over Physics Events s_PhysicsEvents_t* PE = hddm_s->physicsEvents; if(!PE) return; if(!fcalGeom)fcalGeom = new DFCALGeometry(); for(unsigned int i=0; imult; i++){ s_HitView_t *hits = PE->in[i].hitView; if (hits == HDDM_NULL || hits->forwardEMcal == HDDM_NULL || hits->forwardEMcal->fcalBlocks == HDDM_NULL)continue; s_FcalBlocks_t *blocks = hits->forwardEMcal->fcalBlocks; for(unsigned int j=0; jmult; j++){ s_FcalBlock_t *block = &blocks->in[j]; // Create FCAL hits structures to put smeared data into if(block->fcalHits!=HDDM_NULL)free(block->fcalHits); block->fcalHits = make_s_FcalHits(block->fcalTruthHits->mult); unsigned int mult=0; for(unsigned int k=0; kfcalTruthHits->mult; k++){ s_FcalTruthHit_t *fcaltruthhit = &block->fcalTruthHits->in[k]; s_FcalHit_t *fcalhit = &block->fcalHits->in[k]; //Initialization fcalhit->E=0.; fcalhit->t=0.; fcalhit->E = fcaltruthhit->E; fcalhit->t = fcaltruthhit->t; // Simulation simulates a grid of blocks for simplicity. // Do not bother smearing inactive blocks. They will be // discarded in DEventSourceHDDM.cc while being read in // anyway. if(!fcalGeom->isBlockActive( block->row, block->column ))continue; // Smear the energy and timing of the hit double sigma = FCAL_PHOT_STAT_COEF/sqrt(fcaltruthhit->E) ; double E=fcaltruthhit->E*(1.0 + SampleGaussian(sigma)); double t=fcaltruthhit->t + SampleGaussian(200.0E-3); // smear by 200 ps fixed for now 7/2/2009 DL // Apply a single block threshold. if(fcalhit->E >= FCAL_BLOCK_THRESHOLD){ fcalhit->E = E; fcalhit->t = t; mult++; } else if (DROP_TRUTH_HITS==false) mult++; } // k (fcalhits) block->fcalHits->mult = mult; if (DROP_TRUTH_HITS){ FREE(block->fcalTruthHits); block->fcalTruthHits=(s_FcalTruthHits_t *)HDDM_NULL; if (mult==0){ FREE(block->fcalHits); block->fcalHits=(s_FcalHits_t *)HDDM_NULL; } } } // j (blocks) if (DROP_TRUTH_HITS){ unsigned int mult=0; for (unsigned int k=0;kforwardEMcal->fcalBlocks->mult;k++){ s_FcalBlock_t *block = &hits->forwardEMcal->fcalBlocks->in[k]; if (block->fcalHits!=HDDM_NULL){ hits->forwardEMcal->fcalBlocks->in[mult]=hits->forwardEMcal->fcalBlocks->in[k]; mult++; } } hits->forwardEMcal->fcalBlocks->mult=mult; } } // i (physicsEvents) } //----------- // SmearCCAL //----------- void SmearCCAL(s_HDDM_t *hddm_s) { /// Smear the CCAL hits using the same procedure as the FCAL above. /// See those comments for details. // Loop over Physics Events s_PhysicsEvents_t* PE = hddm_s->physicsEvents; if(!PE) return; if(!ccalGeom)ccalGeom = new DCCALGeometry(); for(unsigned int i=0; imult; i++){ s_HitView_t *hits = PE->in[i].hitView; if (hits == HDDM_NULL || hits->ComptonEMcal == HDDM_NULL || hits->ComptonEMcal->ccalBlocks == HDDM_NULL)continue; s_CcalBlocks_t *blocks = hits->ComptonEMcal->ccalBlocks; for(unsigned int j=0; jmult; j++){ s_CcalBlock_t *block = &blocks->in[j]; // Create FCAL hits structures to put smeared data into if(block->ccalHits!=HDDM_NULL)free(block->ccalHits); block->ccalHits = make_s_CcalHits(block->ccalTruthHits->mult); block->ccalHits->mult = block->ccalTruthHits->mult; for(unsigned int k=0; kccalTruthHits->mult; k++){ s_CcalTruthHit_t *ccaltruthhit = &block->ccalTruthHits->in[k]; s_CcalHit_t *ccalhit = &block->ccalHits->in[k]; // Copy info from truth stream before doing anything else ccalhit->E = ccaltruthhit->E; ccalhit->t = ccaltruthhit->t; // Simulation simulates a grid of blocks for simplicity. // Do not bother smearing inactive blocks. They will be // discarded in DEventSourceHDDM.cc while being read in // anyway. if(!ccalGeom->isBlockActive( block->row, block->column ))continue; // Smear the energy and timing of the hit double sigma = CCAL_PHOT_STAT_COEF/sqrt(ccalhit->E) ; ccalhit->E *= 1.0 + SampleGaussian(sigma); ccalhit->t += SampleGaussian(200.0E-3); // smear by 200 ps fixed for now 7/2/2009 DL // Apply a single block threshold. If the (smeared) energy is below this, // then set the energy and time to zero. if(ccalhit->E < CCAL_BLOCK_THRESHOLD){ccalhit->E = ccalhit->t = 0.0;} } // k (fcalhits) } // j (blocks) } // i (physicsEvents) } //----------- // SmearTOF //----------- void SmearTOF(s_HDDM_t *hddm_s) { // Loop over Physics Events s_PhysicsEvents_t* PE = hddm_s->physicsEvents; if(!PE) return; for(unsigned int i=0; imult; i++){ s_HitView_t *hits = PE->in[i].hitView; if (hits == HDDM_NULL || hits->forwardTOF == HDDM_NULL || hits->forwardTOF->ftofCounters == HDDM_NULL)continue; s_FtofCounters_t* ftofCounters = hits->forwardTOF->ftofCounters; // Loop over counters for(unsigned int j=0;jmult; j++){ s_FtofCounter_t *ftofCounter = &(ftofCounters->in[j]); // take care of North Hits s_FtofNorthTruthHits_t *ftofNorthTruthHits = ftofCounter->ftofNorthTruthHits; if (ftofNorthTruthHits->mult>0){ ftofCounter->ftofNorthHits = make_s_FtofNorthHits(ftofNorthTruthHits->mult); ftofCounter->ftofNorthHits->mult = ftofNorthTruthHits->mult; for (unsigned int m=0;mmult;m++){ s_FtofNorthTruthHit_t *ftofNorthTruthHit = &(ftofNorthTruthHits->in[m]); s_FtofNorthHit_t *ftofHit = &(ftofCounter->ftofNorthHits->in[m]); // Smear the time ftofHit->t = ftofNorthTruthHit->t + SampleGaussian(TOF_SIGMA); // Smear the energy double npe = (double)ftofNorthTruthHit->dE * 1000. * TOF_PHOTONS_PERMEV; npe = npe + SampleGaussian(sqrt(npe)); float NewE = npe/TOF_PHOTONS_PERMEV/1000.; ftofHit->dE = NewE; } } // take care of South Hits s_FtofSouthTruthHits_t *ftofSouthTruthHits = ftofCounter->ftofSouthTruthHits; if (ftofSouthTruthHits->mult>0){ ftofCounter->ftofSouthHits = make_s_FtofSouthHits(ftofSouthTruthHits->mult); ftofCounter->ftofSouthHits->mult = ftofSouthTruthHits->mult; for (unsigned int m=0;mmult;m++){ s_FtofSouthTruthHit_t *ftofSouthTruthHit = &(ftofSouthTruthHits->in[m]); s_FtofSouthHit_t *ftofHit = &(ftofCounter->ftofSouthHits->in[m]); // Smear the time ftofHit->t = ftofSouthTruthHit->t + SampleGaussian(TOF_SIGMA); // Smear the energy double npe = (double)ftofSouthTruthHit->dE * 1000. * TOF_PHOTONS_PERMEV; npe = npe + SampleGaussian(sqrt(npe)); float NewE = npe/TOF_PHOTONS_PERMEV/1000.; ftofHit->dE = NewE; } } } // end loop over all counters if (DROP_TRUTH_HITS){ for(unsigned int j=0;jmult; j++){ s_FtofCounter_t *ftofCounter = &(ftofCounters->in[j]); if (ftofCounter->ftofNorthTruthHits->mult>0) FREE(ftofCounter->ftofNorthTruthHits); ftofCounter->ftofNorthTruthHits=(s_FtofNorthTruthHits_t *)HDDM_NULL; if (ftofCounter->ftofSouthTruthHits->mult>0) FREE(ftofCounter->ftofSouthTruthHits); ftofCounter->ftofSouthTruthHits=(s_FtofSouthTruthHits_t *)HDDM_NULL; } } } } //----------- // SmearSTC - smear hits in the start counter //----------- void SmearSTC(s_HDDM_t *hddm_s) { // Loop over Physics Events s_PhysicsEvents_t* PE = hddm_s->physicsEvents; if(!PE) return; for(unsigned int i=0; imult; i++){ s_HitView_t *hits = PE->in[i].hitView; if (hits == HDDM_NULL || hits->startCntr == HDDM_NULL || hits->startCntr->stcPaddles == HDDM_NULL)continue; s_StcPaddles_t *stcPaddles= hits->startCntr->stcPaddles; // Loop over counters for(unsigned int j=0;jmult; j++){ s_StcPaddle_t *stcPaddle = &(stcPaddles->in[j]); s_StcTruthHits_t *stcTruthHits=stcPaddle->stcTruthHits; stcPaddle->stcHits=make_s_StcHits(stcTruthHits->mult); stcPaddle->stcHits->mult=stcTruthHits->mult; for (unsigned int m=0;mmult;m++){ s_StcTruthHit_t *stcTruthHit=&(stcTruthHits->in[m]); s_StcHit_t *stcHit=&(stcPaddle->stcHits->in[m]); // smear the time stcHit->t=stcTruthHit->t + SampleGaussian(START_SIGMA); // Smear the energy double npe = (double)stcTruthHit->dE * 1000. * START_PHOTONS_PERMEV; npe = npe + SampleGaussian(sqrt(npe)); float NewE = npe/START_PHOTONS_PERMEV/1000.; stcHit->dE = NewE; } if (DROP_TRUTH_HITS){ FREE(stcPaddle->stcTruthHits); stcPaddle->stcTruthHits=(s_StcTruthHits_t *)HDDM_NULL; } } } } //----------- // SmearCherenkov //----------- void SmearCherenkov(s_HDDM_t *hddm_s) { } //----------- // InitCDCGeometry //----------- void InitCDCGeometry(void) { CDC_GEOMETRY_INITIALIZED = true; CDC_MAX_RINGS = 28; //-- This was cut and pasted from DCDCTrackHit_factory.cc on 10/11/2007 -- float degrees0 = 0.0; float degrees6 = 6.0*M_PI/180.0; for(int ring=1; ring<=CDC_MAX_RINGS; ring++){ int myNstraws=0; float radius = 0.0; float stereo=0.0; float phi_shift=0.0; float deltaX=0.0, deltaY=0.0; float rotX=0.0, rotY=0.0; switch(ring){ // axial case 1: myNstraws= 42; radius= 10.7219; stereo= degrees0; phi_shift= 0.00000; break; case 2: myNstraws= 42; radius= 12.097; stereo= degrees0; phi_shift= 4.285714; break; case 3: myNstraws= 54; radius= 13.7803; stereo= degrees0; phi_shift= 2.00000; break; case 4: myNstraws= 54; radius= 15.1621; stereo= degrees0; phi_shift= 5.3333333; break; // -stereo case 5: myNstraws= 66; radius= 16.9321; stereo= -degrees6; phi_shift= 0.33333; break; case 6: myNstraws= 66; phi_shift= 0.33333; deltaX= 18.2948 ; deltaY= 0.871486; rotX=-6.47674; rotY=-0.302853; break; case 7: myNstraws= 80; radius= 20.5213; stereo= -degrees6; phi_shift= -0.5000; break; case 8: myNstraws= 80; phi_shift= -0.5000; deltaX= 21.8912; deltaY= 0.860106; rotX=-6.39548; rotY=-0.245615; break; // +stereo case 9: myNstraws= 93; radius= 23.8544; stereo= +degrees6; phi_shift= 1.1000; break; case 10: myNstraws= 93; phi_shift= 1.1000; deltaX= 25.229; deltaY= 0.852573; rotX=+6.34142; rotY=+0.208647; break; case 11: myNstraws= 106; radius= 27.1877; stereo= +degrees6; phi_shift= -1.40; break; case 12: myNstraws= 106; phi_shift= -1.400; deltaX= 28.5658; deltaY= 0.846871; rotX=+6.30035; rotY=+0.181146; break; // axial case 13: myNstraws= 123; radius= 31.3799; stereo= degrees0; phi_shift= 0.5000000; break; case 14: myNstraws= 123; radius= 32.7747; stereo= degrees0; phi_shift= 1.9634146; break; case 15: myNstraws= 135; radius= 34.4343; stereo= degrees0; phi_shift= 1.0000000; break; case 16: myNstraws= 135; radius= 35.8301; stereo= degrees0; phi_shift= 2.3333333; break; // -stereo case 17: myNstraws= 146; radius= 37.4446; stereo= -degrees6; phi_shift= 0.2; break; case 18: myNstraws= 146; phi_shift= 0.2; deltaX= 38.8295; deltaY= 0.835653; rotX=-6.21919 ; rotY=-0.128247; break; case 19: myNstraws= 158; radius= 40.5364; stereo= -degrees6; phi_shift= 0.7; break; case 20: myNstraws= 158; phi_shift= 0.7; deltaX=41.9225 ; deltaY= 0.833676; rotX=-6.20274; rotY=-0.118271; break; // +stereo case 21: myNstraws= 170; radius= 43.6152; stereo= +degrees6; phi_shift= 1.1000; break; case 22: myNstraws= 170; phi_shift= 1.1000; deltaX=45.0025 ; deltaY= 0.831738; rotX=+6.18859; rotY=+0.109325; break; case 23: myNstraws= 182; radius= 46.6849; stereo= +degrees6; phi_shift= 1.40; break; case 24: myNstraws= 182; phi_shift= 1.400; deltaX= 48.0733; deltaY= 0.829899; rotX=+6.1763; rotY=+0.101315; break; // axial case 25: myNstraws= 197; radius= 50.37; stereo= degrees0; phi_shift= 0.200000000; break; case 26: myNstraws= 197; radius= 51.77; stereo= degrees0; phi_shift= 1.113705000; break; case 27: myNstraws= 209; radius= 53.363; stereo= degrees0; phi_shift= 0.800000000; break; case 28: myNstraws= 209; radius= 54.76; stereo= degrees0; phi_shift= 1.661244; break; default: cerr<<__FILE__<<":"<<__LINE__<<" Invalid value for CDC ring ("<