C This program calculates the spectrum of bremsstrahlung radiation from a C crystal radiator. The formalism is that described in the following paper. C W. Kaune, G. Miller, W. Oliver, R.W. Williams, and K.K. Young, C C "Inclusive cross sections for pion and proton production by photons C using collimated coherent bremsstrahlung", Phys Rev D, vol 11, C no 3 (1975) pp. 478-494. C C Author: Richard Jones 8-July-1997 C #define vector real Subroutine cobrems(Emax,Epeak,emitmr,radt,dist,coldiam,polar) real Emax,Epeak,emitmr,radt,dist,coldiam include 'cobrems.inc' integer i real c dpi=acos(-1d0) me=5.11e-4 !electron mass (GeV) alpha=7.297e-3 !fine structure constant hbarc=1.97e-16 !Planck's constant * speed of light (GeV m) Z=6 !atomic number of diamond a=3.56e-10 !dimension of diamond unit cell (m) Aphonon=0.5e9 !phonon-free recoil constant (GeV**-2) betaFF=111*Z**(-1/3.)/me !cutoff for atomic form-factor (/GeV) mospread=20e-6 !crystal r.m.s. mosaic spread E=Emax !electron beam energy (GeV) Erms=6.0e-4 !electron beam energy rms spread (GeV) emit=emitmr !electron beam emittance (m r) spot=0.0005 !electron beam spot size at collimator (m) D=dist !distance from radiator to collimator (m) t=radt !thickness of radiator (m) collim=coldiam !collimator diameter (m) thx=-0.0300/E !rotation of crystal about x (first) thy=0.050 !rotation of crystal about y (second) C-- require Epeak < Emax if (Epeak.ge.Emax) then return endif C-- decide if you want total or polarized flux unpolar=(polar.eq.0) C-- approximate calculation of angle from primary edge energy edge=Epeak !desired position of primary edge qtotal=9.8e-6 !Qtot for dominant lattice vector qlong=edge/(E-edge)*me**2/(2*E) thx=-qlong/qtotal C-- PDG formula for radiation length, converted to meters c=alpha*Z radlen=4*nsites*alpha**3*(hbarc/(a*me))**2/a + *( (Z**2)*(log(184.15*Z**(-1/3.)) + -(c**2)*(1/(1+c**2) + 0.20206 - 0.0369*(c**2) + + 0.0083*(c**4) - 0.002*(c**6))) + + Z*log(1194*Z**(-2/3))) C-- Schiff formula for radiation length, converted to meters c zeta=log(1440*Z**(-2/3.))/log(183*Z**(-1/3.)) c radlen=4*nsites*alpha**3*(hbarc/(a*me))**2/a c + *Z*(Z+zeta)*log(183*Z**(-1/3.)) C-- use either one formula or the other from above radlen=1/radlen write(6,*) write(6,1000) 1000 format('Initialization for coherent bremsstralung calculation') write(6,1010) E 1010 format(' electron beam energy:',f12.3,'GeV') write(6,1012) emit*1e9 1012 format(' electron beam emittance:',f12.3,'mm.urad') write(6,1020) 'diamond',t*1e6 1020 format(' radiator crystal: ',a10,', thickness',f8.0,'um') write(6,1030) radlen*1e2,mospread*1e6 1030 format(' radiation length:',f8.1,'cm, mosaic spread:',f8.1,'urad') write(6,1040) collim/(2*D)*(E/me) 1040 format(' photon beam collimator half-angle:',f12.3,'(m/E)') write(6,1045) colDiam*1e2 1045 format(' Collimator diameter:',f8.3,'cm') write(6,1050) thx*1e3,thy*1e3 1050 format(' crystal orientation: theta-x',f10.3,'mrad', + /' theta-y',f10.3,'mrad') C define the unit cell of the radiator crystal ucell(1,1)=0 ucell(2,1)=0 ucell(3,1)=0 do i=1,3 ucell(1,1+i)=ucell(1,1)+0.5 ucell(2,1+i)=ucell(2,1)+0.5 ucell(3,1+i)=ucell(3,1)+0.5 ucell(i,1+i)=ucell(i,1+i)-0.5 enddo ucell(1,5)=0.25 ucell(2,5)=0.25 ucell(3,5)=0.25 do i=1,3 ucell(1,5+i)=ucell(1,5)+0.5 ucell(2,5+i)=ucell(2,5)+0.5 ucell(3,5+i)=ucell(3,5)+0.5 ucell(i,5+i)=ucell(i,5+i)-0.5 enddo C define the crystal->lab rotation matrix rotate(1,1)=1 rotate(1,2)=0 rotate(1,3)=0 rotate(2,1)=0 rotate(2,2)=1 rotate(2,3)=0 rotate(3,1)=0 rotate(3,2)=0 rotate(3,3)=1 call rotmat(rotate,0d0,dpi/2,0d0) !point (1,0,0) along beam call rotmat(rotate,0d0,0d0,dpi/4) !point (0,1,1) vertically call rotmat(rotate,-thx,0d0,0d0) !the goniometer-x rotation call rotmat(rotate,0d0,-thy,0d0) !the goniometer-y rotation write(6,2000) (rotate(1,j),j=1,3) write(6,2000) (rotate(2,j),j=1,3) write(6,2000) (rotate(3,j),j=1,3) 2000 format(3f12.6) end real function cohrat(x) real x include 'cobrems.inc' real yc,yi yc=dNcdx(x) yi=dNidx(x) cohrat=(yc+yi)/(yi+1e-30) end real function dNtdx(x) real x include 'cobrems.inc' dNtdx=dNcdx(x)+dNidx(x) end real function dNtdx3(x,dRadCol,diamCol) real x,dRadCol,diamCol include 'cobrems.inc' if (dRadCol.gt.0) D=dRadCol if (diamCol.gt.0) collim=diamCol if (diamCol.lt.0) collim=-2*D*diamCol*me/E dNtdx3=dNcdx(x)+dNidx(x) end real function dNtdk(k) real k include 'cobrems.inc' dNtdk=dNtdx(k/E)/E end real function dNcdx(x) real x include 'cobrems.inc' real phi phi=dpi/4 dNcdx=2*dpi*dNcdxdp(x,phi) end real function dNcdx3(x,dRadCol,diamCol) real x,dRadCol,diamCol include 'cobrems.inc' real phi if (dRadCol.gt.0) D=dRadCol if (diamCol.gt.0) collim=diamCol if (diamCol.lt.0) collim=-2*D*diamCol*me/E phi=dpi/4 dNcdx3=2*dpi*dNcdxdp(x,phi) end real function dNcdxdp(x,phi) real x,phi include 'cobrems.inc' integer h,k,l double precision ReS,ImS,S2 double precision q2,qT2,q(3),qdota real xmax,theta2,FF,sum integer hmin,kmin,lmin real q3min integer i real sigma0 sigma0=16*dpi*t*Z**2*alpha**3*E*(hbarc/a**2)*(hbarc/a/me)**4 q2points=0 q3min=1 sum=0 do h=-4,4 ! can replace with 0,0 for cpu speed-up if crystal alignment is "reasonable" do k=-10,10 do l=-10,10 c do k=-2,-2 c do l=-2,-2 if (h/2*2.eq.h) then if (k/2*2.ne.k) then goto 10 elseif (l/2*2.ne.l) then goto 10 elseif ((h+k+l)/4*4.ne.h+k+l) then goto 10 endif elseif (k/2*2.eq.k) then goto 10 elseif (l/2*2.eq.l) then goto 10 endif ReS=0 ImS=0 do i=1,nsites qdota=2*dpi*(h*ucell(1,i) + k*ucell(2,i) + l*ucell(3,i)) ReS=ReS+cos(qdota) ImS=ImS+sin(qdota) enddo S2=ReS**2+ImS**2 if (S2.lt.1e-4) then goto 10 endif qnorm=2*dpi*hbarc/a q(1)=qnorm*(rotate(1,1)*h + rotate(1,2)*k + rotate(1,3)*l) q(2)=qnorm*(rotate(2,1)*h + rotate(2,2)*k + rotate(2,3)*l) q(3)=qnorm*(rotate(3,1)*h + rotate(3,2)*k + rotate(3,3)*l) q2=q(1)**2+q(2)**2+q(3)**2 qT2=q(1)**2+q(2)**2 xmax=2*E*q(3) xmax=xmax/(xmax+me**2) if ((x.gt.xmax).or.(xmax.gt.1)) then goto 10 else c write(6,*) h,k,l,S2 c write(6,*) q2,xmax endif if (q(3).lt.q3min) then q3min=q(3) hmin=h kmin=k lmin=l endif theta2=(1-x)*xmax/(x*(1-xmax)) - 1 FF=1/(1+q2*betaFF**2) sum=sum+sigma0*qT2*S2*exp(-Aphonon*q2)*(FF*betaFF**2)**2 + * ((1-x)/(x*(1+theta2))**2) + * ((1+(1-x)**2) + - 8*(theta2/(1+theta2)**2)*(1-x)*cos(phi)**2) + * acceptance(theta2) + * polarization(x,theta2) C comment out the preceding line to disable polarization -RTJ q2points=q2points+1 q2theta2(q2points)=theta2 q2weight(q2points)=sum 10 continue enddo enddo enddo dNcdxdp=sum c if (q3min.lt.1) write(6,*) hmin,kmin,lmin,' best plane at',x end real function dNidx(x) real x include 'cobrems.inc' integer iter,niter real theta2 !numerical integration over d(theta**2) over [0,inf] real u,du !is transformed by u=1/(1+theta**2) to d(u) over [0,1] niter=50 dNidx=0 if (x.gt.1) then return endif du=1./niter do iter=1,niter u=(iter-0.5)/niter theta2=(1-u)/u dNidx=dNidx+dNidxdt2(x,theta2)*du/u**2 enddo c write(6,*) dNidx end C In the following paper, a closed form is given for the integral that C is being performed analytically by dNidx. I include this second form C here in case some time it might be useful as a cross check. C C "Coherent bremsstrahlung in crystals as a tool for producing high C energy photon beams to be used in photoproduction experiments at C CERN SPS", Nucl. Instr. Meth. 204 (1983) pp.299-310. C C Note: in this paper they have swapped subscripts for coherent and C incoherent intensities. This is not very helpful to the reader! C C The result is some 15% lower radiation rate than the result of dNidx. C I take the latter to be more detailed (because it gives a more C realistic behaviour at the endpoint and agrees better with the PDG C radiation length for carbon). Most of this deficiency is remedied C by simply replacing Z**2 in the cross section with Z*(Z+zeta) as C recommended by Kaune et.al., and followed by the PDG in their fit C to radiation lengths. C C WARNING C dNidx and dNBidx give the incoherent radiation rate for crystalline C radiators. If you take the incoherent radiation formulae here and C integrate them you will NOT obtain the radiation length for amorphous C radiators; it will be overestimated by some 15%. The reason is that C the part of the integral in q-space that is covered by the discrete C sum has been subtracted to avoid double-counting with the coherent C part. If you were to spin the crystal fast enough, the coherent C spectrum would average out to yield the remaining 15% with a spectral C shape resembling the Bethe-Heitler result. real function dNBidx(x) real x include 'cobrems.inc' real psiC1,psiC2 real AoverB2,Tfact real zeta AoverB2=Aphonon/betaFF**2 Tfact=-(1+AoverB2)*exp(AoverB2)*EXPINT(AoverB2) psiC1=2*(2*log(betaFF*me)+Tfact+2) psiC2=psiC1-2/3. zeta=log(1440*Z**(-2/3.))/log(183*Z**(-1/3.)) dNBidx=nsites*t*Z*(Z+zeta)*alpha**3*(hbarc/(a*me))**2/(a*x) + * (psiC1*(1+(1-x)**2) - psiC2*(1-x)*2/3.) end real function dNidxdt2(x,theta2) real x,theta2 include 'cobrems.inc' real MSchiff,delta,zeta delta=1.02 zeta=log(1440*Z**(-2/3.))/log(183*Z**(-1/3.)) MSchiff=1/(((me*x)/(2*E*(1-x)))**2 + 1/(betaFF*me*(1+theta2))**2) dNidxdt2=2*nsites*t*Z*(Z+zeta)*alpha**3*(hbarc/(a*me))**2/(a*x) + *( ((1+(1-x)**2)-4*theta2*(1-x)/(1+theta2)**2)/(1+theta2)**2 + *(log(MSchiff) - 2*delta*Z/(Z+zeta)) + + 16*theta2*(1-x)/(1+theta2)**4 - (2-x)**2/(1+theta2)**2 ) + * acceptance(theta2) c write(6,*) dNidxdt2 end real function rpara(x,theta2,phi) real x,theta2,phi include 'cobrems.inc' rpara=0.5*((1+1-x)**2)*(1+theta2)**2 + -8*theta2*(1-x)*cos(phi)**2 + -8*theta2**2*(1-x)*cos(phi)**2*sin(phi)**2 end real function rortho(x,theta2,phi) real x,theta2,phi include 'cobrems.inc' rortho=0.5*x**2*(1+theta2)**2 + +8*theta2**2*(1-x)*cos(phi)**2*sin(phi)**2 end real function polarization(x,theta2) real x,theta2 include 'cobrems.inc' if (unpolar) then polarization=1 return endif polarization=2*(1-x)/((1+theta2)**2*((1-x)**2+1) - 4*theta2*(1-x)) end real function acceptance2(theta2,phi) real theta2,phi include 'cobrems.inc' real xc,yc real xshift,yshift parameter (xshift=1.7e-3,yshift=0) real theta theta=sqrt(theta2)*me/E xc=D*sin(theta)*cos(phi)+xshift yc=D*sin(theta)*sin(phi)+yshift acceptance2 = acceptance((atan2(sqrt(xc**2+yc**2),D)*(E/me))**2) end real function acceptance(theta2) real theta2 include 'cobrems.inc' vector sig(4) real u,var0,varMS,thetaC real pu,du2,u0,u1,u2 integer iter,niter real theta Comment out the following lines to enable collimation -RTJ acceptance=1 return Comment out the preceding lines to enable collimation -RTJ acceptance=0 niter=50 theta=sqrt(theta2) thetaC=collim/(2*D)*(E/me) var0=(spot/D*(E/me))**2 varMS=sigma2MS(t)*(E/me)**2 sig(1)=sqrt(var0) sig(2)=sqrt(varMS) if (theta.lt.thetaC) then u1=thetaC-theta if (u1**2/(var0+varMS).gt.20) then acceptance=1 return endif do iter=1,niter u=u1*(iter-0.5)/niter u2=u**2 du2=2*u*u1/niter if (varMS/var0.gt.1e-4) then pu=(EXPINT(u2/(2*(var0+varMS)))-EXPINT(u2/(2*var0))) + /(2*varMS) else pu=exp(-u2/(2*var0))/(2*var0) endif acceptance=acceptance + pu*du2 enddo endif u0=abs(theta-thetaC) u1=abs(theta+thetaC) do iter=1,niter u=u0+(u1-u0)*(iter-0.5)/niter u2=u**2 du2=2*u*(u1-u0)/niter if (varMS/var0.gt.1e-4) then pu=(EXPINT(u2/(2*(var0+varMS)))-EXPINT(u2/(2*var0))) + /(2*varMS) else pu=exp(-u2/(2*var0))/(2*var0) endif acceptance=acceptance + pu*du2/dpi + * atan2(sqrt((theta2-(thetaC-u)**2)*((thetaC+u)**2-theta2)), + theta2-thetaC**2+u2) enddo end subroutine rotmat(matrix,thx,thy,thz) double precision matrix(3,3),thx,thy,thz C Matrix(out) = Rx(thx) Ry(thy) Rz(thz) Matrix(in) C with rotations understood in the passive sense double precision x,y,z double precision sint,cost integer i if (thz.ne.0) then sint=sin(thz) cost=cos(thz) do i=1,3 x=matrix(1,i) y=matrix(2,i) matrix(1,i)=cost*x+sint*y matrix(2,i)=-sint*x+cost*y enddo endif if (thy.ne.0) then sint=-sin(thy) cost=cos(thy) do i=1,3 x=matrix(1,i) z=matrix(3,i) matrix(1,i)=cost*x+sint*z matrix(3,i)=-sint*x+cost*z enddo endif if (thx.ne.0) then sint=sin(thx) cost=cos(thx) do i=1,3 y=matrix(2,i) z=matrix(3,i) matrix(2,i)=cost*y+sint*z matrix(3,i)=-sint*y+cost*z enddo endif end subroutine convol(nbins) integer nbins include 'cobrems.inc' vector hisx(10000),hisy(10000),sig(4) real norm(10000),result(10000) real x,x0,x1,dx real alph,dalph real var0,varMS real term integer i,ii,j x0=hisx(1) x1=hisx(nbins) var0=(mospread**2+(emit/spot)**2) varMS=sigma2MS(t) sig(3)=sqrt(var0)*E/me sig(4)=sqrt(varMS)*E/me C--Here we have to guess which characteristic angle alph inside the crystal C is dominantly responsible for the coherent photons in this bin in x. C I just use the smallest of the two angles, but this does not work when C both angles are small, and you have to be more clever -- BEWARE!!! C--In any case, fine-tuning below the mosaic spread limit makes no sense. alph=min(abs(thx),abs(thy)) if (alph.eq.0) then alph=max(abs(thx),abs(thy)) else alph=max(alph,mospread) endif do j=1,nbins norm(j)=0 result(j)=0 do i=-nbins,nbins dx=(x1-x0)*(j-i)/nbins x=x0+(x1-x0)*(j-0.5)/nbins dalph=dx*alph/(x*(1-x)) if (varMS/var0.gt.1e-4) then term=dalph/varMS + *(ERF(dalph/sqrt(2*(var0+varMS))) - ERF(dalph/sqrt(2*var0))) + + sqrt(2/dpi)/varMS + *(exp(-dalph**2/(2*(var0+varMS)))*sqrt(var0+varMS) + -exp(-dalph**2/(2*var0))*sqrt(var0)) else term=exp(-dalph**2/(2*var0))/sqrt(2*dpi*var0) endif term=term*alph/x norm(j)=norm(j)+term enddo enddo c write(6,*) norm do i=-nbins,nbins if (i.lt.1) then ii=1-i else ii=i endif do j=1,nbins dx=(x1-x0)*(j-i)/nbins x=x0+(x1-x0)*(j-0.5)/nbins dalph=dx*alph/(x*(1-x)) if (varMS/var0.gt.1e-4) then term=dalph/varMS + *(ERF(dalph/sqrt(2*(var0+varMS))) - ERF(dalph/sqrt(2*var0))) + + sqrt(2/dpi)/varMS + *(exp(-dalph**2/(2*(var0+varMS)))*sqrt(var0+varMS) + -exp(-dalph**2/(2*var0))*sqrt(var0)) else term=exp(-dalph**2/(2*var0))/sqrt(2*dpi*var0) endif term=term*alph/x result(ii)=result(ii)+term*hisy(j)/norm(j) enddo enddo do i=1,nbins if (abs(result(i)).gt.1e-35) then hisy(i)=result(i) else hisy(i)=0 endif enddo end real function sigma2MS(tt) real tt C--Chose one of the available implementations of this function below. c Some formulas, although valid for a reasonable range of target thickness, c can go negative for extremely small target thicknesses. Here I protect c against these unusual cases by taking the absolute value. [rtj] sigma2MS=abs(sigma2MS_Geant(tt)) end real function sigma2MS_Kaune(tt) real tt include 'cobrems.inc' C--Multiple scattering formula of Kaune et.al. c with a correction factor from a multiple-scattering calculation c taking into account the atomic and nuclear form factors for carbon. c--Note by RTJ, Oct. 13, 2008: c I think this formula overestimates multiple scattering in thin targets c like these diamond radiators, because it scales simply like sqrt(tt). c Although the leading behavior is sqrt(tt/radlen), it should increase c faster than that because of the 1/theta**2 tail of the Rutherford c distribution that makes the central gaussian region swell with increasing c number of scattering events. For comparison, I include below the PDG c formula (sigma2MS), the Moliere formula used in the Geant3 simulation c of gaussian multiple scattering (sigma2MS_Geant), and a Moliere fit for c thin targets taken from reference Phys.Rev. vol.3 no.2, (1958), p.647 c (sigma2MS_Hanson). The latter two separate the gaussian part from the c tails in different ways, but both agree that the central part is much c more narrow than the formulation by Kaune et.al. below. carboncor=4.2/4.6 sigma2MS_Kaune=8*dpi*nsites*alpha**2*Z**2*tt*(hbarc/(E*a))**2/a + *log(183*Z**(-1/3.)) + *carboncor end real function sigma2MS_pdg(tt) real tt include 'cobrems.inc' C--The PDG formula instead (with beta=1, charge=1) c This formula is said to be within 11% for t > 1e-3 rad.len. sigma2MS_pdg=(13.6e-3/E)**2*(tt/radlen) + *(1+0.038*log(tt/radlen))**2 end real function sigma2MS_Geant(tt) real tt include 'cobrems.inc' C--Geant3 formula for the rms multiple-scattering angle c This formula is based on the theory of Moliere scattering. It contains c a cutoff parameter F that is used for the fractional integral of the c scattering probability distribution that is included in computing the c rms. This is needed because the complete distribution of scattering c angles connects smoothly from a central gaussian (small-angle c multiple-scattering regime) to a 1/theta^2 tail (large-angle Rutherford c scattering regime) through the so-called plural scattering region. F=0.98 ! probability cutoff in definition of sigma2MS density=3.534 ! g/cm^3 chi2cc=(0.39612e-2)**2*(Z*(Z+1))*(density/12) ! GeV^2/m chi2c=chi2cc*(tt/E**2) rBohr=0.52917721e-10 ! m chi2alpha=1.13*(hbarc/(E*rBohr*0.885))**2 + *Z**(2/3.)*(1+3.34*(alpha*Z)**2) omega0=chi2c/(1.167*chi2alpha) ! mean number of scatters gnu=omega0/(2*(1-F)) sigma2MS_Geant=chi2c/(1+F**2)*((1+gnu)/gnu*log(1+gnu)-1) end real function sigma2MS_Hanson(tt) real tt include 'cobrems.inc' C--Formulation of the rms projected angle attributed to Hanson et.al. c in reference Phys.Rev. vol.3 no.2, (1958), p.647. This is just Moliere c theory used to give the 1/e angular width of the scattering distribution. c In the paper, though, they compare it with experiment for a variety of c metal foils down to 1e-4 rad.len. in thickness, and show excellent c agreement with the gaussian approximation out to 4 sigma or so. I c like this paper because of the excellent agreement between the theory c and experimental data. density=3.534 ! g/cm^3 ttingcm=tt*100*density Atomicweight=12 EinMeV=E*1000 theta2max=0.157*Z*(Z+1)/Atomicweight*(ttingcm/EinMeV**2) theta2screen=theta2max*Atomicweight*(1+3.35*(Z*alpha)**2) + /(7800*(Z+1)*Z**(1/3.)*ttingcm) BminuslogB=log(theta2max/theta2screen)-0.154 Blast=1 do i=1,999 B=BminuslogB+log(Blast) if (B.lt.1.2) then B=1.21 goto 10 elseif (abs(B-Blast).gt.1e-6) then Blast=B else goto 10 endif enddo 10 continue sigma2MS_Hanson=theta2max*(B-1.2)/2 end