
The FCAL CAN Bus

Claire Tarbert

June 27, 2010

1 Overview

The GlueX forward calorimeter (FCAL) will be comprised of 2800 lead glass blocks each
viewed by a photomultiplier tube (PMT) assembly. This assembly includes a phototube
plus a Cockroft-Walton base supplying high voltage to the PMT dynodes. Control of
the base electronics is centered around a CAN-enabled STM8S208RB microcontroller
(MCU) [1]. Details of the CAN protocol can be found in appendix A. When linked
together, the bases form a 2800-node CAN bus which facilitiates communication with
the bases in order to, for example, set high voltages and for monitoring purposes. This
communication system relies on two pieces of software: a firmware program running on
the MCU carrying out instructions on reception of a CAN message, and a complimentary
server program which acts as the user interface to the bus and generates the appropriate
CAN messages.

The firmware is specific to the STM8S208RB chipset and the base electronics in gen-
eral. Similarly, the server program is unique to the hardware being used to access the
CAN bus. At present, we have two devices available for connecting to the bus: USB-
CAN dongles from Peak Systems and an Ethernet-CAN gateway from AnaGate. Server
programs for both of these devices have been developed for use with Windows and Linux
operating systems.

This document summarises the main features of both the PMT firmware (section 2)
and the various server programs (section 3). Some basic instructions on how to install
and use the software and a list of possible future developments are also included.

2 STM8S208RB Firmware

The microcontroller on the FCAL bases must be able to:

• Support CAN communication

1

• Set HVs (i.e. use a DAC)

• Read HVs (i.e. read an ADC)

• Communicate with an ID chip

• Provide a 1MHz clock for the base electronics

It must be able to receive a CAN message, execute the instruction contained in the
message and send a CAN message back if requested. The chip must have the potential to
carry out these functions and an operating system, i.e. firmware, installed that exploits
all of these features. Listed below are the main features of the STM8S208RB:

• 24MHz 8-bit MCU

• 128 kBytes flash memory (program memory)

• 2 kBytes (for bootloader)

• 6 kBytes RAM

• 10 bit ADC with 16 channels

• CAN 2.0B interface (up to 1MBit/s)

• SPI, I2C, UART communication

• 16MHz internal clock

• Nested interrupt controller with 32 interrupts

The STM8S208RB does not have an integrated DAC and instead uses an external DAC
from Linear Technology. The following sections describe the firmware operation.

2.1 Firmware Program: “BaseFirmware”

The STM8S208RB firmware is written in C and built using the RKit-STM8 C com-
piler and assembler from Raisonance within the Ride7 development environment. Ride7
produces an application in hex form which can be loaded into the flash memory of the
microcontroller using either the Ride7 or RFlasher tools. When the MCU boots, it runs
the program as a stand alone operating system. The program is structured as follows:

1. All pins are configured in output mode.

2. The high speed internal clock is configured.

3. The clock to all unused peripherals e.g. I2C, is disabled.

2

4. Pins used as inputs are configured.

5. Request for ID is made to external ID chip to be used in CAN message arbitration.

6. CAN communication is configured.

7. Interrupts are enabled.

8. Program enters an infinite loop.

9. On reception of a valid CAN message (valid messages being those that have succes-
fully passed the CAN arbitration), an interrupt is generated.

10. The message data is extracted and, depending on the content, actions carried out.

A list of the MCU ports, their uses and initial configuration is given in section B.

2.2 Internal Clock

The STM8S208RB can in principle accept a high speed external clock source up to 24MHz.
It also has a configurable 16MHz internal RC oscillator. This internal oscillator has been
configured to act as a 2MHz clock for the CPU. It has also been prescaled to use as an
output on one of the chip’s pins providing a 1MHz clock for the rest of the base electronics.
A list of the appropriate clock registers to set to achieve this configuration and their values
can be found in table 7.

2.3 Communication with ID chip

The DS2401 chips each have a 48-bit registration number which can be used to uniquely
identify the FCAL bases. Communication between the MCU and the DS2401 is done
serially along a single wire. The chip is connected to one of the general purpose input
output ports (GPIO) on the MCU. As the MCU pulls the GPIO pin high or low, the
leading edge of the pulse activates a timing circuit in the ID chip. The ID chip then
translates specific timing sequences as different commands. Similarly it can transmit
information to the MCU via timed sequences across the single wire.

The specific sequence to read back the ID from the chip is:

1. Transmit initialisation pulse.

2. Send the read ID command.

3. Configure the GPIO in input mode and read back the ID.

The timings for each of these actions are listed in the DS2401 data sheet [4]. To calibrate
the pulse timing of the final boards, the serial communication between the MCU and ID
chip should be observed on a scope. An example of the timing is shown in figure 1.

3

Figure 1: Illustration of correct ID chip timing you should see on a scope.

2.4 CAN communication

The PMT firmware is configured to communicate at a baud rate of 50kBit/s. If necessary
this can be changed by adjusting the oscillator and baud rate prescaler registers in the
CAN InitT ransmit() function.

On reception of a valid CAN message, an interrupt is generated and the firmware
breaks out of the infinite loop in order to perform the requested action. Only valid
messages generate an interrupt; valid messages are those which successfully pass the CAN
arbitration (for details of the CAN protocol see appendix A). To do so, the incoming
message must meet the following conditions:

• The 8-byte ID field of the message must be either 0×0 or 0×00000000XXYYZZ
where 0×XXYYZZ are the 3 least significant bytes of the board ID.

4

• The RTR bit must be zero.

• The IDE bit must be 1 (extended messaging format).

The arbitration is configured in the CAN InitT ransmit() function.
Once an interrupt has been generated by CAN activity, the firmware parses the data

field of the CAN frame. The first byte of the data field is the command byte and indicates
the action the firmware should take. Extra bytes may be needed to define the command
further. A list of messages understood by the bases is given in table 1 and messages that
can be generated by the bases, in table 2. Messages transmitted by a base are always
encoded with the base ID in the identifier field to ensure that they are not read by other
bases on the bus.

2.5 Communication with DAC

The LTC2630 is a 12 bit DAC from linear technology and can be controlled using a 3-wire
Serial Port Interface (SPI). On the STM8S208RB, 3 of the pins have dual purposes as
both general purpose input output ports and as the MOSI, MISO and clock pins for SPI
communication with peripheral devices. A fourth pin (CSS) is used to switch between
different SPI modes. An example of the correct relative timing between the clock (SCK),
MOSI (SKI) and CSS (C̄S) pins can be seen in figure 2. This can be looked at with a
scope for debugging purposes. Once the serial port interface has been correctly configured,

Figure 2: 3-wire SPI timing needed for communication with DAC[4].

the DAC operation is as follows [4]:

1. Initialise STM8S208RB SPI peripheral.

2. Pull chip select pin (CSS) low.

3. Send 4 bit command telling DAC to write and update DAC register.

5

Purpose
Command
Byte

Extra Bytes Extra bytes
Reply
from
base

Read ADC 0xBB 1

0x00: Read medium voltage (bottom)

y

0x01: Read medium voltage (top)
0x02: Read 1st dynode voltage
0x03: Read photocathode voltage
0x04: Read DAC output voltage
0x05: Read temperature monitor
0x06: Read current monitor

Set Voltage 0xCC 2
New voltage (0→4096)

n1st byte: most significant 8bits of new voltage
2nd byte: least significant 4bits of new voltage

Enable HV (experts only) 0x99 2

0x22 0x00: Enable MVT n
0x20 0x00: Disable MVT n
0x11 0x00: Enable MVB n
0x10 0x00: Disable MVB n
0x88 0x00: Enable HVT n
0x80 0x00: Disable HVT n
0x44 0x00: Enable HVB n
0x40 0x00: Disable HVB n
0x00 0x05: Enable JAM HVB n
0x00 0x04: Disable JAM HVB n
0x00 0x0A: Enable JAM HVT n
0x00 0x08: Disable JAM HVT n
0x00 0x00: Read enable bit status y

Request Board ID 0x88 0 y

Switch LED 0x77 1
0x00: Red

n0x01: Green
0x02: Off

Test Pulser 0xEE 1
0x00: Fire test pulser until a CAN message is received

n0x01: Enable external sync to fire pulser
0x02: Disable external sync

Request Low Power Mode 0xAA 0 n

Read Firmware Version 0x66 0 n

Table 1: Messages understood by firmware

6

Purpose Command Byte # Extra Bytes Description
Read ADC 0xBB 2 Requested voltage.
Board ID 0x88 6 Request for the board ID.
Firmware Version 0x66 2 Firmware version.

Table 2: Messages generated by firmware

4. Send 4 bits that will be ignored by the DAC.

5. Send 12 bits (most significant bit first) containing the digital value to write to the
register.

6. Pull the chip select pin high.

2.6 Low Power Mode

Pulling the CAN STBY pin (PC3) high significantly reduces the power consumption of
the board, however, with CAN STBY high, the MCU is unable to generate interrupts due
to activity on the CAN RX pin i.e. it can not parse CAN messages. Therefore, to enter a
lower power mode, CAN STBY is pulled high and interrupts are instead enabled on PC1
which is OR-d with the CAN RX pin. On reception of a subsequent CAN message, the
MCU detects activity on PC1, and an interrupt is generated. The function associated
with this interrupt disables interrupts on PC1 and CAN STBY is pulled low. With
CAN STBY now low, the CAN message can generate an interrupt on the CAN RX pin,
and the message is parsed as normal.

2.7 Interrupts

At present interrupts can be generated by activity on the CAN RX pin (reception of a
valid CAN message) or when the base is in low power mode, by activity on pin C3. The
interrupt routines are specified in firmware IT.c and a complete list of interrupt vectors
is given in the RKit-STM8 C compiler manual [8].

2.8 Installing a new firmware version and In Application Pro-
gramming

The STM8S208RB has the capability to download a firmware upgrade over CAN, however,
the default STM8S bootloader is written in such a way that this would require an external
oscillator connected to the chip. There is no external oscillator on the FCAL bases and a
custom bootloader for the STM8S208RB needs to be written if firmware updates are to
be made in this way.

7

At present, the flash memory can be overwritten via the Single Wire Interface Module
(SWIM) pin [2]. In addition to the 10-pin connector providing power and a means of
trasmitting via CAN, the bases are equiped with a separate 4-pin connector giving access
to the SWIM pin. Using this connector, the USB-SWIM dongle, and the Ride7 develop-
ment environment the flash memory on the MCU can be completely overwritten with a
new firmware version (instructions on how to do this are given in appendix D.1).

This method of completely overwritting the flash memory is termed in circuit program-
ming (ICP). The firmware, in principle, can also be updated via in application program-
ming (IAP). In this technique, part of the flash memory is write-protected and a custom
bootloader is stored there. Writing to the correct sequence of configuration registers on
the MCU will cause the MCU to access this custom bootloader instead of the default
one. The bootloader could be used to overwrite the rest of the (not write-protected) flash
memory with a new firmware version downloaded over CAN. This is in development [6].

3 Server Programs

The firmware for the bases is not stand alone; a secondary program running on a PC is
needed that does the following:

• Connects to the FCAL CAN bus.

• Generates CAN messages containing instructions for the bases.

• Sends messages over the bus.

• Reads and understands messages generated by the FCAL bases.

3.1 USB-CAN Communication

Previously, the connection between PC and CAN bus was via a USB-CAN dongle from
Peak System Technik. Two server programs (baseControl and TestServ) were written
using libraries supplied with the dongle for generating messages and sending them via
USB. These interactive programs (for Linux and Windows respectively) give the user a
list of options to choose from - set HV, read HV etc - and generate a CAN message that
will be understood by the firmware accordingly.

3.2 Ethernet-CAN communication

The CAN-USB protocol requires a PC connected directly to the CAN bus via a USB
dongle and as such means a PC would need to be attached to the FCAL. To eliminate the
need for a PC in the experimental hall, we have purchased a TCP/IP-CAN gateway device
from AnaGate Gmbh. In principle, the gateway is connected directly to the network and

8

assigned an IP address. TCP-IP messages can then be sent to the gateway over the
network, which in turn sends a CAN message over the bus. Similarly, when the device
receives a CAN message, it relays it across the network.

3.3 AnaGate CAN Quattro

The main features of the AnaGate CAN Quattro device [5] are:

• 4 independent CAN buses

• 4 digital inputs/outputs

• TCP/IP and CAN settings configurable with a standard web browser

• C++ functions for sending and receiving CAN messages provided in Linux and
Windows libraries

• Rack mountable

3.4 Server Program: NetControl

The libraries of C++ functions for controlling the TCP-IP gateway provided by AnaGate
have been used to port baseControl for use with the AnaGate CAN Quattro - the new
program is called NetControl.

Although NetControl has the same functionality as baseControl, the simplicity of
the AnaGate library functions (listed in table 3) mean it has to be structured slightly
differently. However, this simplicity also makes it very easy to use. All of the AnaGate
functions, bar CANSetCallback(), have a complimentary function in the Peak CAN-USB
libs. CANSetCallback() is used to define a function that will be called when a CAN
message is received. If the CANSetCallBack() function has not been called, then any
messages received by the gateway will be lost.

Function Description

CANOpenDevice Opens a TCP/IP connection to AnaGate device.

CANSetGlobals Sets global variables needed for the CAN bus.

CANWrite Sends a CAN message to the AnaGate device.

CANSetCallback
Defines a function to be called when the AnaGate device
receives a CAN message.

CANSetCloseDevice Closes an open TCP/IP connection.

Table 3: AnaGate library functions

Instructions how to compile and set up your environment to run NetControl can be
found on the TaskD wiki.

9

4 Outstanding Tasks (as of June 27, 2010)

• In application programming.

A CAN

A.1 CAN protocol

CAN is a message based protocol, designed to allow microcontrollers to communicate
without a host computer. Each node(base) on the bus is able to send and receive messages,
but not simulataneously. If the bus is free any node may begin to transmit a message.
If two nodes simultaneouly transmit a message CAN uses an arbitration field to allow
the dominant node to transmit its data. The recessive node then resumes transmitting
after the bus is clear. The arbitration field (figure 3) is a 29 or 11 bit identifier using
nondestructive bitwise arbitration. Meaning that once an arbitration has taken place the
recessive message need not start from the beginning. The bitwise operation views logical
0 as the dominant bit and logical 1 as the recessive bit. A message becomes recessive
as soon as the bit underconsideration is recessive when compared to a dominant bit as
illustrated in figure 4.

The CAN message also contains a control field, an 8 byte data field, and a CRC
checksum field. The control field alerts when the identifier field has ended and the CRC
field is an error detection field. CAN sets flag bits once a certain threshold of errors have
occured for a particular node. The node is then turned off of the bus when it has reached
a critcal number of message errors and then can no longer send or receive messages. The
node can then only be turned back on by a hardware or software reset.

Figure 3: CAN frame format.

B STM8S208RB port designation

The pin designation for the final base design is given in table 4

10

Figure 4: CAN bus arbitration.

Table 4: STM8S208RB pin assignments

Purpose Port Pin # Initial Configuration
Reset NRST 1 -

VCAP 6 -
ADC VREF (ref voltage+) VREF+ 18 -

VDDA 19 -
VSSA 20 -

ADC VREF (ref voltage-) VREF−
21 -

MON TEMP (temp monitor) PB6/AIN6 24 Floating input
MON CURR (current monitor) PB5/AIN5 25 Floating input
MON VDAC PB4/AIN4 26 Floating input
MON VCATH PB3/AIN3 27 Floating input
MON VDY01 PB2/AIN2 28 Floating input
MON MVT PB1/AIN1 29 Floating input
MON MVB PB0/AIN0 30 Floating input

PC1 34 Input
PC2 35 Input

CAN STBY PC3 36 Push-pull output (fast)
SPI CS (for DAC) PC4 37 Push-pull output (slow)
SPI SCK (for DAC) PC5 38 -
SPI MOSI (for DAC) PC6 41 -
CAN Tx PG0 43 Push-pull output (fast)
CAN Rx PG1 44 Pull-up input

PG5 49 Push-pull output
PG6 50 Push-pull output

DS2401 (ID chip) PE4 52 Output
Continued on next page

11

Table4 – continued from previous page
Purpose Port Pin # Initial Configuration
LED (red) PE2 54 Open drain output (slow)
LED (green) PE1 55 Open drain output (slow)
CLK CCO (clock output) PE0 56
SWIM DATA PD1 58 -
ENB MVB PD2 59 Push-pull output
ENB MVT PD3 60 Push-pull output
ENB HVB PD4 61 Push-pull output
ENB HVT PD5 62 Push-pull output
JAM HVB PD6 63 Push-pull output
JAM HVT PD7 64 Push-pull output

Unused

PA1, PA2, PA3 2, 3, 9

Push-pull output (slow)

PA4, PA5, PA6 10, 11, 12
PF0, PF3, PF4 22, 17, 16
PF5, PF6, PF7 15, 14, 13
PE5, PE6, PE7 33, 32, 31
PB7, PC7, PI0 23, 42, 48
PG2, PG3, PG4 45, 46, 47

PD0 57

Unused
PH0 - PH7 No pin out

Push-pull outputPI1 - PH7 on 64-pin
PC0 package

C 10-pin ribbon cable assignment

The pin assignment for the 10-pin ribbon cable used to connect the bases is given in
table 5. Pins 2, 5 and 7 are bridged together. Pins 6 and 8 are also bridged together.

D Raisonance Tools

The STM8S208RB has been supplied with an integrated development environment from
Raisonance Tools for writing application code for microcontrollers. It comes with the
RKit-STM8 C compiler, linker and assembler and when used with an RLink dongle, can
be used to directly upload an application to a chip. It also provides an integrated simulator
which allows you to debug the application without running it on a chip. Running the
simulator, gives an indication of which registers will be set when the program is run.

12

Pin Use
10 Synch H
9 Synch L
8 +24V
7 Ground
6 +24V
5 CAN GND
4 CAN H
3 CAN L
2 Ground
1 Reset

Table 5: 10-pin ribbon cable assignment

D.1 Setting Up a New Firmware Project in Ride7

This section describes how to start a new project and upload it to the STM8S208RB. The
chip can be programmed through the R-Link dongle.

1. Start Ride7.

2. Click on New Project icon.

3. Choose STM8S208RB chip.

4. Name project and choose the Target Directory.

5. Click on New File icon to create source file.

6. Save file to the choosen Target Directory of the project.

7. Right click on the project name in the project window.

8. Select Add...→Item...

9. Select source file.

10. Select Project→Make Project.

11. Select Debug→Start.

N.B. Due to a bug in the RKit C-compiler, the compiler optimisation level can not be
set higher than level 1. Changing the optimisation level may also result in having to
recalibrate the DAC serial timing, since the optimisation may remove or alter some of
the delay functions (empty loops) being used. To check the optimisation level, from the
Project drop down menu, choose Properties, then Optimisation.

13

D.2 Uploading a new firmware version using RFlasher

To install a new firmware version via the SWIM connector:

1. Start RFlasher.

2. Connect RLink dongle to CAN bus.

3. Click Erase button to erase STM8S208RB flash.

4. Click Upload F ile button to choose new firmware to install.

5. Click Program button.

6. Click Reset and Run button to boot new firmware on chip.

D.3 STM8S Firmware Library Files

ST Microelectronics supply a library of source and header files that can be dropped
directly, more or less, into a project to provide utilities for common STM8S applica-
tions. These library files can be identified by the prefix “stm8s”. For example, the file
stm8s adc2.h defines a group of variables that hold the addresses of the registers asso-
ciated with the ADC. stm8s adc2.c contains a group of functions designed to simplify
the process of initialising those registers. When the base firmware was initially being
developed, ST microelectronics did not provide software support for the CAN peripheral.
Instead, Raisonance distributed code (stm8s can.c, stm8s can.h) that mimic the STM8S
library functions but for the CAN peripheral. Since that time, ST Microelectronics have
begun providing software support for CAN and if a new version of the ST firmware library
is downloaded it includes files named stm8s can.c, stm8s can.h. However, the Raisonance
code is much simpler to use and switching to th e ST version would require quite a bit of
effort. As a result, it is the Raisonance code that is still used in the base firmware.

A full list of the library files used in BaseFirmware are listed in table 6.

E Clock registers

References

[1] RM0016 Reference Manual, STMicroelectronics, http://www.st.com/

[2] UM0470 STM8 SWIM communication protocol and debug module, STMicroelectron-
ics, http://www.st.com/

[3] DS2401 Silicon Serial Number Data Sheet, Dallas Semiconductors http://www.maxim-
ic.com/

14

Header File Contents

stm8s adc2 Prototypes/macros for the ADC2 peripherals

stm8s can
Provided by Raisonance. Implements CAN functions that mimick the STMi-
croelectronics’ STM8S library, but specifically for the CAN peripheral.

stm8s clk All function prototypes and macros for the CLK peripheral.

stm8s gpio All function prototypes and macros for the GPIO peripheral.

stm8s conf Library configuration.

stm8s lib Includes the peripherals header files in the user application.

stm8s All generic macros and all HW registers definitions and memory mapping.

stm8s spi Function prototypes and macros for the SPI peripheral.

stm8s type All common data types.

Table 6: STM8S Library Files

Register Value Action

CLK ICKR bit 0 1 Enables 16MHz high speed internal clock

CLK SWR 0xE1 Selects 16MHz oscillator as master clock

CLK SWCR 0x00000010

CLK CKDIVR 0x00011001
Prescales the clock by setting fmaster=8MHz and
fCPU=2MHz.

CLK PCKENR2 bit 7 1

CLK CCOR 0x00001001
Configures the clock as an output on one of the MCU
pins.

Table 7: Clock registers to set

15

[4] LTC2630 DAC Data Sheet, Linear Technology

[5] Manual AnaGate CAN UNO/DUO/QUATTRO, Analytica, http://www.anagate.de/

[6] STMS in application programming using a customized bootloader, ST microelectonics
Application Note AN2659, http://www.st.com/

[7] IU Cockroft-Walton PMT base talk for electronics workshop, Gluex-doc-397-v2 .

[8] STM8, ST7 Compiler manual, http://www.mcu-raisonance.com/ .

16

	Overview
	STM8S208RB Firmware
	Firmware Program: ``BaseFirmware''
	Internal Clock
	Communication with ID chip
	CAN communication
	Communication with DAC
	Low Power Mode
	Interrupts
	Installing a new firmware version and In Application Programming

	Server Programs
	USB-CAN Communication
	Ethernet-CAN communication
	AnaGate CAN Quattro
	Server Program: NetControl

	Outstanding Tasks (as of June 27, 2010)
	CAN
	CAN protocol

	STM8S208RB port designation
	10-pin ribbon cable assignment
	Raisonance Tools
	Setting Up a New Firmware Project in Ride7
	Uploading a new firmware version using RFlasher
	STM8S Firmware Library Files

	Clock registers

