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BCAL Segmentation and Reconstruction

David Lawrence

1 60 =90° clean showers

Plots 2-4 were generated using the particle gun to shoot photons at 90 degrees into the
center of the BCAL. The particles were shot from the beam line and passed between FDC
packages, avoiding much of their material. In addition, the dark pulses, energy smearing
due to sampling, time smearing, and applied threshold were disabled in mcsmear to leave
relatively clean showers. The energy range for these events was 160-680MeV.

Below are definitions of a few of the energy terms found on the plots below.

E,econ Reconstructed energy as read from DBCALShower::E. In the case of KLOE code,
this includes the energy correction function (see fig. 6).

FErqw Sum of energy from each cell before the correction function is applied. For cases
where the smearing, dark pulses and fADC level thresholds are disabled, this will
correspond the exact energy deposited in the calorimeter for those cells included in
the cluster. This is read from DBCALShower::E_raw.

Y Euthhits Sum of energy from all DBCALTruthCell objects. For the events in this study,
a single incident particle exists so all energy must come from it. Many events have
splitoff particles that travel to parts of the BCAL where the energy is deposited
(~1—2MeV). The splitoffs are included here, but that energy will not be included
in the reconstructed values.

Egen, The generated energy given to the incident photon in GEANT.
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Figure 2: Difference between reconstructed and generated energy for 90° photons incident
on the center of the BCAL in z. No dark pulses, energy smearing, time smearing, or fADC
level thresholds were included in the smearing of the simulated data. The energy correction
functions (see fig. 6) were still applied however, which assumed these effects were included.
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Figure 3: Width of distributions such as those shown in the plot on the left in fig 2. The
values were the os resulting from Gaussian fits (not necessarily the best shape).
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Figure 4: Intrinsic energy resolution of GEANT generated data. For these plots, the dark
pulses, energy smearing (mcsmear), time smearing (mcsmear) and fADC level thresholds
were disabled. The resulting width is due to energy leakage (see fig. 1).
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Figure 5: Energy resolution obtained when using full simulation (including all dark pulses
and energy smearing features). Reconstruction is done using the KLOE code.
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Figure 6: Energy correction at 90° as a function of energy as applied in the KLOE re-
construction code. The curves shown here are for showers entering at the center of the

BCAL.
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Figure 7: Energy loss with(top) and without(bottom) the fADC level threshold applied.
The fine segmentation scheme is shown in the plots on the left while the course segmentation
is on the right. The small tail to the left of the top plots is due to energy leakage (mainly
out the back for 90° incident particles.
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Figure 8: Difference between reconstructed energy and sum of energy from all cells hit.
The sum comes from summing over all DBCALTruthCell objects (which are copies of the
information in HDDM in barrelEMcal— > bcalCell— > bealHit). These are for 90°
incident photons in the center of the BCAL. Dark pulses, energy smearing (mcsmear),
time smearing (mcsmear) and fADC level thresholds were disabled. The fine segmentation
scheme is on the left while the course scheme is on the right. The deviation from zero is
due to the correction factor (fig. 6) being applied to data for which the sources of error
that lead to the corrections have been removed.



2 Full simulation/reconstruction

Plots 10-18 were generated using the standard simulation which includes dark pulses,
thresholds, and smearing of both timing and energy values.
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Figure 9: Energy resolution (relative) as a function of generated energy and generated
polar angle 6. These are results from Gaussian fits to the relative energy difference.
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Figure 10: Energy resolution as a function of energy for various angular ranges. Shown are
the KLOE algorithm (top) and the Indiana algorithm (bottom) for the fine segmentation
scheme (left) and course segmentation scheme (right). These are obtained from Gaussian
fits to the relative energy distribution for individual bins in figure 9.
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Figure 11: Energy resolution as a function of 6 for various energy ranges. Shown are
the KLOE algorithm (top) and the Indiana algorithm (bottom) for the fine segmentation
scheme (left) and course segmentation scheme (right). These are obtained from Gaussian
fits to the relative energy distribution for individual bins in figure 9.
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Figure 17: Reconstruction efficiency (projections) from 4o cut for both reconstruction
algorithms applied to both segmentation schemes. Shown are the KLOE algorithm (top)
and the Indiana algorithm (bottom) for the fine segmentation scheme (left) and course
segmentation scheme (right).
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Figure 19: 6 angular resolution (projections) for both reconstruction algorithms applied to
both segmentation schemes.
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