
Hall-D Computer Resources Usage

David Lawrence

July 23, 2013

GlueX-doc-2277-v1

Abstract

This document presents results from tests run on three JLab computers to measure
the resource requirements for a typical offline processing job of GlueX production data.
Tests were done using multi-threaded JANA processes to also verify the scaling of event
rates as well as hyper-thread vs. physical core performance. Resident memory usage
was measured for reconstruction jobs to be at about 1/3 the rate of what would be
required for multiple processes.

1 Testing platforms and conditions

The testing was done using three computers that were temporarily removed from
the JLab Scientific computing farm so that exclusive and interactive access could be
granted. Details on the computers are given in table 1.

Table 1: Specifications for computers used in testing.

node processor RAM OS

farm12032 2.0GHz Intel Xeon E5-2650 (Sandy Bridge) 32GB CentOS 6.2 (x86 64)
farm11020 2.0GHz AMD Opteron 6128 64GB CentOS 6.2 (x86 64)
farm11008 2.533GHz Intel Xeon E5630 (Westmere) 24GB CentOS 6.2 (x86 64)

Tests were done using events similar to what is expected with the real data. Specifi-
cally, the Hall-D sim-recon code at svn revision r11231 was used. Events were generated
using the PYTHA-based program bggen. The events were simulated and smeared using
the hdgeant and mcsmear programs respectively. The resulting data file was passed
through the hd eventfilter program which discards events that are not expected to pass
the L1 electronic trigger. This resulted in a file filtered.hddm that contained the same
information expected for real data, plus some Monte Carlo “truth” information that
will not be in the actual data stream. Another difference with real data is that this

1

file was in HDDM format while the real data will be in EVIO format. This is relevant
only in the limit where we become I/O bound rather than CPU bound.

Testing was done by having a script run the hd root program repeatedly, with a
different number of threads each time. Three plugins were used:

danarest invokes the actual reconstruction and write the reconstructed events out to
a REST1 file.

janarate records the event processing time and total integrated rate of every event
into a ROOT tree

janadot records call graph and processing time spent in each JANA factory to help
profile where the time is being spent.

The resource usage was recorded by using the standard /usr/bin/time -v tool.
This provides information not only on the time spent by the process, but the resident
memory usage itself. It should be noted that there is apparently a long standing bug
in the time tool that causes it to report resident memory usage that is about 4 times
larger than it should. See figure 1 for details.

2 Memory Usage

Figure 2 shows the memory usage as a function of the number of processing threads
for each of the 3 computers tested. The memory usage of a multi-threaded process
can be compared to what one should expect for running multiple single-threaded pro-
cesses using the numbers extracted from the linear fits shown on the plots. For ex-
ample, the top plot indicates that a process with a single processing thread would use
565MB + 160MB = 725MB. In the limit of a large number of threads, the multi-
threaded memory usage is less than 1/4 of what multi-process would use. There more
relevant numbers would be the total memory usage expected for running 32 processes
vs. running a single 32-thread process. Table 2 gives these estimates for reconstruction
jobs.

Table 2: Memory usage for 32 processes reconstruction processes or threads on a multi-core
computer. Multi-threading requires significantly less RAM

node RAM usage multi-process (estimated) RAM usage multi-thread

farm12032 22.7 GB ± 0.9 GB 5.55 GB ± 0.04 GB

farm11020 20.7 GB ± 0.8 GB 5.55 GB ± 0.04 GB

farm11008 20.0 GB ± 0.9 GB 5.53 GB ± 0.04 GB

1REST is an HDDM format specifically designed to hold summary event information similar to a tradi-
tional DST.

2

Figure 1: Example output from the /usr/bin/time -v tool showing the command being
analyzed and the resources it used. The value of “Maximum resident set size (kbytes)” is
used to determine the memory used by this processes. A long standing bug causes this
value to be scaled up by the “Page size” in kB. In this particular example, the actual
memory usage 899 MB. The values reported in this document have been scaled by the
page size to correct for this bug.

3

Table 3 shows total memory usage for 32 core computers running GlueX simulation.
The values in the table were scaled up to what would be needed to fully utilize all 32
cores. At this point in time, the hdgeant program must be run single threaded so the
memory usage reflects this. It is most likely that simulation farm jobs will be designed
such that hdgeant will be run with mcsmsear being run immediately after as part of the
same job. It would then only make sense to run the mcsmear program single threaded
as well. This would lead to a memory requirement for simulation nodes to have at least
12.7 GB. This requirement may change significantly as we transition to Geant4 which
has recently added some multi-threading capabilities.

Table 3: Memory usage for 32 simulation processes or threads on a multi-core computer.
Simulation jobs will likely include both hdgeant and mcsmear making the larger memory
requirement the relevant one. See text for details.

node hdgeant mcsmear (multi-thread) mcsmear (multi-process)

farm12032 7.4 GB 1.1 GB 12.7 GB

farm11020 7.4 GB

farm11008 7.1 GB

Figure 3 shows the memory usage by the Monte Carlo smearing program mcsmear.
This program performs second stage processing on Monte Carlo data to add additional
effects and realistic detector resolutions. Its resource requirements must therefore be
included in those needed for simulation. This test was limited to only the Sandy
Bridge architecture and a few threads in order to identify the trend. As indicated
in the caption of the figure, a fully utilized 32-core computer will require 1.1 GB of
memory for multi-threaded processing and 12.7 GB of memory for multi-process. It
should be noted that at the time of this writing, the first stage simulation done by
hdgeant must be run multi-process as it has no multi-threading capability.

2.1 Raw Data Reconstruction Rates

Figures 4-5 show the reconstruction rates as a function of the number of processing
threads for each of the three computers used in the current study. For the Intel pro-
cessors the regions where hyper-threads were used are clearly visible for these plots.
Separate linear fits were done to the regions dominated by physical cores(red) and
hyper threading (blue). The green fits are to regions where the processor is over-
subscribed with more threads than available cores+hyperthreads. The data from the
two Intel computers indicate that hyper threads give the equivalent of about 25%-30%
of a physical core. By contrast, the AMD processor shows less rate per physical core,
but all physical cores appear to contribute equally even when all 32 cores are utilized.
The end result is that AMD chip appears to have roughly equivalent processing power
as the Sandy Bridge Intel chip when all cores are utilized. If not all cores are utilized
however, the Intel processor will provide better compute capability to those processes
that are running than the AMD processor.

4

Number of threads
0 5 10 15 20 25 30 35 40

To
ta

l r
es

id
en

t m
em

or
y

(G
B

)

0

1

2

3

4

5

6

 29 MB±Base memory: 565

July 23, 2013 DL
svn revsion 11231

2.0GHz Intel Xeon E5-2650 (Sandy Bridge)

 1 MB±Memory per thread: 160

Memory Usage vs. Num. Threads

Number of threads
0 5 10 15 20 25 30 35 40

To
ta

l r
es

id
en

t m
em

or
y

(G
B

)

0

1

2

3

4

5

6

 25 MB±Base memory: 501

July 23, 2013 DL
svn revsion 11231

2.0GHz AMD Opteron 6128

 1 MB±Memory per thread: 162

Memory Usage vs. Num. Threads

Number of threads
0 5 10 15 20 25 30 35 40

To
ta

l r
es

id
en

t m
em

or
y

(G
B

)

0

1

2

3

4

5

6

 28 MB±Base memory: 477

July 23, 2013 DL
svn revsion 11231

2.533GHz Intel Xeon E5630 (Westmere)

 1 MB±Memory per thread: 162

Memory Usage vs. Num. Threads

Figure 2: Memory usage vs. the number of threads for each of the 3 computers tested. The
values of “Base Memory” and “Memory per thread” are the offset and slope of the linear
fits shown. The total memory used by a single threaded process would be approximately
the sum of these two numbers. This indicates memory usage by multi-threading rises at
roughly 25% the rate that it does for multi-process.

5

Number of threads
0 2 4 6 8 10 12

To
ta

l r
es

id
en

t m
em

or
y

(G
B

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 3 MB±Base memory: 374

July 23, 2013 DL
svn revsion 11231

2.0GHz Intel Xeon E5-2650 (Sandy Bridge)

 0 MB±Memory per thread: 23

Memory Usage vs. Num. Threads

Figure 3: Memory usage vs. the number of threads when running the mcsmear program
The program applies detector resolutions and is a necessary step in generating Monte Carlo
data for GlueX. (It is not needed for processing real data). This exercise was not carried
out to the full 32 threads, but extrapolation indicates only 374 MB + (32 threads×23 MB)
= 1.1 GB would be needed for multi-threaded operation while 32 threads×(374 MB + 23
MB) = 12.7 GB would be needed for multi-process.

6

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200

Integrated rate vs. number of threads

7.7 evts/s/thread

1.9 evts/s/thread
0.0 evts/s/thread

hyperthread = 25% of physical core

July 23, 2013 DL
svn revsion 11231

2.0GHz Intel Xeon E5-2650 (Sandy Bridge)

Integrated rate vs. number of threads

Figure 4: Event reconstruction rate vs. number of processing threads on a 16-core, 2.0GHz
Intel Sandy Bridge computer. Hyper-threading was enabled and additional performance
is achieved at a rate equivalent to about 25% of a physical core per hyperhread. This is
determined by fitting the physical cores only region (red) and the hypthreads region (blue)
to lines and comparing the slopes. The green line is in the region where the processor is
over-subscribed and no additional performance benefit is seen from the extra threads.

7

0 5 10 15 20 25
0

20

40

60

80

100

120

Integrated rate vs. number of threads

9.1 evts/s/thread

2.7 evts/s/thread
-0.0 evts/s/thread

hyperthread = 30% of physical core

July 23, 2013 DL
svn revsion 11231

2.533GHz Intel Xeon E5630 (Westmere)

Integrated rate vs. number of threads

Figure 5: Event reconstruction rate vs. number of processing threads on a 8-core, 2.533GHz
Intel Westmere computer. Hyper-threading was enabled and additional performance is
achieved at a rate equivalent to about 30% of a physical core per hyperhread. This is
determined by fitting the physical cores only region (red) and the hypthreads region (blue)
to lines and comparing the slopes. The green line is in the region where the processor is
over-subscribed and no additional performance benefit is seen from the extra threads.

8

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200

Integrated rate vs. number of threads

5.0 evts/s/thread

-0.3 evts/s/thread

July 23, 2013 DL
svn revsion 11231

2.0GHz AMD Opteron 6128

Integrated rate vs. number of threads

Figure 6: Event reconstruction rate vs. number of processing threads on a 32-core, 2.0GHz
AMD Opteron computer. The green line is in the region where the processor is over-
subscribed and no additional performance benefit is seen from the extra threads.

9

2.2 Summary

• Reconstruction on single physical core of 2.0 GHz Sandy Bridge: 130 ms/event

• Total reconstruction rate on 2.0GHz Sandy Bridge (16 cores + 16 HT): 150 Hz

• Total memory for 32 core computer doing reconstruction: 5.6 GB

• Total memory for 32 core computer doing simulation: 12.7 GB

10

