Meson Spectroscopy

Matthew Shepherd Indiana University

GlueX Analysis Workshop Jefferson Lab May 11 - 13, 2016

QCD in the Standard Model

- Three quark colors
- Color singlets required
- Two typical arrangements: mesons and baryons

Baryons (e.g., proton and neutron)

Higgs Boson

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Evidence of Color

$$\mathcal{B}(B^0 \to D^- \pi^+) = 2.7 \times 10^{-3}$$

$$B^0 \longrightarrow D^-$$

Interactions in QCD

Have: freely propagating spin-1/2 quark in *rgb* space

Want: "physics" to remain invariant under unitary color transformations

 $\left(\begin{array}{c}\psi_r\\\psi_g\\\eta/\eta_h\end{array}\right)\to U\left(\begin{array}{c}\psi_r\\\psi_g\\\eta/\eta_h\end{array}\right)$ $\mathcal{L} = i(\hbar c)\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - (mc^2)\bar{\psi}\bar{\psi}$

This requires the introduction of eight massless gauge fields (the gluons) and several interaction terms -- note that gluons interact with each other!

gluons

quark-gluon vertex

three-gluon vertex

four-gluon vertex

Higher Order Corrections

 In QED, vacuum polarization acts to "screen" the charges of interacting particles resulting in weaker force at large distance.

scale of corrections set by $\alpha = 1/137$

 In QCD quark loops screen the QCD force, but gluon loops provide an "antiscreening" effect that dominates, resulting in a stronger force at large distances.

scale of QCD corrections set by $\alpha_s > 0.1$

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

DEPARTMENT OF PHYSICS

QCD Features

- Gluon-gluon interactions in QCD give rise to fascinating features of QCD
 - running of the effective coupling: confinement (?) and asymptotic freedom
 - generation of a significant amount of the nucleon mass
 - nonperturbative theory

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

- At low energy, we must study QCD through hadrons
- QCD Lagrangian suggests hadrons could be built with any colorless combination of quarks and gluons
 - > 3 quarks, glueballs, quark-gluon hybrids all seem to be allowed

S. Bethke hep-ex/0606035

Other Types of Hadrons

- Goal: understand what the QCD Lagrangian is telling us about the rules for building hadrons
 - Do this by studying the spectrum of mesons

Constituent Quark Model

- Assemble mesons from spin 1/2 constituent quarks with effective masses
 - a model: not the quark fields in the QCD Lagrangian

$$J = L + S P = (-1)^{L+1} C = (-1)^{L+S}$$

S = 0 or I, and L = 0, I, 2, ...

Evidence for Constituent Quarks

Patterns are Essential!

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Light Quark Mesons from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

ТIJ

Meson Quantum Numbers

color singlet quark anti-quark

 $J = L + S P = (-1)^{L+1} C = (-1)^{L+S}$

Allowed J^{PC}: 0⁻⁺, 0⁺⁺, 1⁻⁻, 1⁺⁻, 2⁺⁺, ... Forbidden J^{PC}: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, ...

Meson Quantum Numbers

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

T

Light Quark Mesons from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

DEPARTMENT OF PHYSICSINDIANA UNIVERSITY
College of Arts and Sciences
Bloomington

- What can we measure about a meson that informs us about its place in the spectrum?
 - mass

- charge
- production and decay tendencies

An Example: Measuring J

cosv

cost

VOLUME 8, NUMBER 2

PHYSICAL REVIEW LETTERS

JANUARY 15, 1962

DIFFERENTIAL π - π CROSS SECTIONS: EVIDENCE FOR THE SPIN OF THE ρ MESON^{*}

D. Duane Carmony[†] and Remy T. Van de Walle[‡] Lawrence Radiation Laboratory, University of California, Berkeley, California (Received November 6, 1961; revised manuscript received December 27, 1961)

Light Quark Mesons from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

ТIJ

Searches for the exotic hybrid π_1

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

TU

Searches for the exotic hybrid π_1

17

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

π_I→η'π

 $E852 \pi^{-}p \rightarrow \eta'\pi^{-}p$ [PRL 86, 3977 (2001)]

$Z(3900)^{\pm} \rightarrow \pi^{\pm}J/\psi$

College of Arts and Sciences

Bloomington

T

Light Quark Mesons from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Ш

$f_2(1270)$ and $f_2'(1525)$

PRD 92, 052003 (2015)

Events / 15 MeV/c²

Events / 15 MeV/c²

Ш

PRD 68, 052003 (2003)

J/ψ→γK⁺K⁻

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

GlueX: A Unique Piece of Global Program

hadron probes

electromagnetic probes

ongoing/future

completed/analysis

M. R. Shepherd GlueX Analysis Workshop May 11, 2016

Ш

colliding beam

College of Arts and Sciences Bloomington

Photoproduction

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Ľ

U DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences

Bloomington

Challenges of Precision Analysis

(that don't go away with a better understanding of the detector or more compute nodes)

Challenges of Precision Analysis

(that don't go away with a better understanding of the detector or more compute nodes)

Challenges of Precision Analysis

(that don't go away with a better understanding of the detector or more compute nodes)

or

 Goal: use the unique capabilities of GlueX to understand which broad classes of hadrons that nature allows to emerge from QCD

- Goal: use the unique capabilities of GlueX to understand which broad classes of hadrons that nature allows to emerge from QCD
- A systematic approach is required

- Goal: use the unique capabilities of GlueX to understand which broad classes of hadrons that nature allows to emerge from QCD
- A systematic approach is required
 - need an accelerator, detector, and beam

- Goal: use the unique capabilities of GlueX to understand which broad classes of hadrons that nature allows to emerge from QCD
- A systematic approach is required
 - need an accelerator, detector, and beam
 - need data

- Goal: use the unique capabilities of GlueX to understand which broad classes of hadrons that nature allows to emerge from QCD
- A systematic approach is required
 - need an accelerator, detector, and beam
 - need data
 - need to understand and calibrate detector

- Goal: use the unique capabilities of GlueX to understand which broad classes of hadrons that nature allows to emerge from QCD
- A systematic approach is required
 - need an accelerator, detector, and beam
 - need data
 - need to understand and calibrate detector
 - need to cleanly isolate event topologies or reactions

- Goal: use the unique capabilities of GlueX to understand which broad classes of hadrons that nature allows to emerge from QCD
- A systematic approach is required
 - need an accelerator, detector, and beam
 - need data
 - need to understand and calibrate detector
 - need to cleanly isolate event topologies or reactions
 - need to develop model for extracting useful fundamental information that can be fit to the data

- Goal: use the unique capabilities of GlueX to understand which broad classes of hadrons that nature allows to emerge from QCD
- A systematic approach is required
 - need an accelerator, detector, and beam
 - need data
 - need to understand and calibrate detector
 - need to cleanly isolate event topologies or reactions
 - need to develop model for extracting useful fundamental information that can be fit to the data
- Repeat the last two steps with increasing complexity
 - a versatile and robust software framework for data analysis is required