Polarization Update

Justin Stevens GlueX Bi-weekly: March 16

Photon polarization studies

- Methods for measuring polarization:
 - * Coherent Bremsstrahlung Shape Analysis (CBSA)
 - * Triplet Polarimeter (TPOL)
 - * Asymmetry for ρ production
- * 3 diamonds used this spring:
 - * J1A50: 50 μm diamond used for the last ~year in Hall D
- * All relevant data collected so far with 5 mm collimator hole

Coherent Bremsstrahlung Shape Analysis (CBSA)

- Determine enhancement = diamond/amorphous using accidental subtracted Tagger-SC coincidences or PS triggered events
- * Fit enhancement data to phenomenological model including diamond and collimation characteristics to extract polarization (Ken Livingston)

* Work ongoing to better understand accidental subtraction, especially at high rates

* Could be causing reduced enhancements at high rate with 20 µm diamond

Triplet polarimeter (TPOL) asymmetry

- * Triplet production $\phi_{ ext{e}}$ asymmetry: $\gamma e^-
 ightarrow e^- e^+ e^-$
- * Independent analyses ongoing by Nathan and Mike
- * Nathan: comparison of 20 and 50 µm diamonds with 750 µm converter

Require PS pair energy between 8.4 and 9.2 GeV

https://logbooks.jlab.org/entry/3390445

Triplet polarimeter (TPOL) asymmetry

- * Triplet production ϕ_{e} asymmetry: $\gamma e^{-}
 ightarrow e^{-} e^{+} e^{-}$
- * Independent analyses ongoing by Nathan and Mike
- * Mike: comparison of 75 and 750 µm converter with 50 µm diamond

Require PS pair energy between 8.4 and 9.2 GeV

http://lc.asu.edu/~dugger/TPOL/polUpdate3-14-2016.pdf

ρ asymmetry: 50 μm diamond (J1A50)

*** Runs 10491-10498**: ~38K ρ events in 8.4 < E_γ < 9 GeV

* Fit asymmetry in bins of E_{χ}

ρ asymmetry: 20 μm diamond (JD70-118)

*** Runs 10782-10783**: ~30K ρ events in 8.4 < E_γ < 9 GeV

Fit asymmetry in bins of E_x

More statistics available

*

p asymmetry: 50 vs 20 μm (JD70-118)

Summary

- * We have three independent methods for evaluating the photon beam polarization which all have some benefits and limitations
- * The observed asymmetries are consistent between the three diamonds we're currently using with the 5 mm hole
 - When beam comes back we will use the tighter 3.4 mm collimator to study it's impact on polarization; some benefit expected for 20 um diamonds
- Continue parallel analyses to continue understanding polarization systematics over the range of beam conditions we've seen so far this spring

Backup

p event selection

ρ asymmetry: 50 μm diamond (J1A50)

*** Runs 10491-10498**: 12 hours of wall time, ~500M events

* 30-50 nA average current, 50 µm diamond

* ~38K ρ events in 8.4 < E_y < 9 GeV

ρ asymmetry: 50 μm diamond (J1A50)

*** Runs 10491-10498**: ~38K ρ events in 8.4 < E_γ < 9 GeV

* Fit asymmetry in bins of E_{χ} + compare with enhancement fit

ρ asymmetry: 20 μm diamond (JD70-118)

*** Runs 10782-10783**: ~30K ρ events in 8.4 < E_γ < 9 GeV

* Fit asymmetry in bins of E_{γ} + compare with enhancement fit

ρ asymmetry: 20 μm diamond (JD70-119)

*** Runs 10873-10875**: ~20K ρ events in 8.4 < E_γ < 9 GeV

Fit asymmetry in bins of E_x

More statistics available

*

ρ asymmetry: 20 μm diamond (JD70-119)

*** Runs 10873-10875**: ~30K ρ events in 8.4 < E_γ < 9 GeV

* Fit asymmetry in bins of E_{γ} + compare with enhancement fit

p asymmetry: 50 vs 20 μm (JD70-119)

ρ asymmetry: 20 μm comparison

Collimation

Diamond (µm)		20		50	
Collimator (mm)		3.4	5	3.4	5
Flux	(220 nA)	1	1.4	2	3.2
Peak Polarization		0.42	0.39	0.41	0.39
Peak Tag. Effic.		0.55	0.66	0.48	0.62

http://zeus.phys.uconn.edu/halld/cobrems/ratetool.cgi

* Peak polarization increase from 5.0 → 3.4 mm collimator for idealized case is similar for 50 and 20 μ m diamonds

p asymmetry control samples

