A study of meson and baryon decays to strange final states with GlueX

A Proposal to Jefferson Lab PAC 39

from the GlueX Collaboration

Matt Shepherd GlueX Deputy Spokesperson (Indiana University)

Outline

- GlueX introduction and overview
 - summary of PAC-approved running
 - status of baseline detector construction
 - initial physics goals
- Physics motivation for additional high-luminosity running with kaon identification
 - search for ss hybrids
 - isoscalar hybrid mixing angles
 - cascade baryons
- Key components of proposed upgrade
 - forward particle identification system
 - level-three trigger to accommodate high-luminosity running

Hybrid Mesons

- have gluonic degrees of freedom, gluons as constituent particles
- patterns of states expected -- LQCD consistent with "constituent gluon" model
- In the light quark sector we expect an isovector triplet and two isoscalars for each J^{PC}

$$|\ell\bar{\ell}
angle \equiv (|u\bar{u}
angle + |d\bar{d}
angle)/\sqrt{2}$$
 (3+1 states)
 $|s\bar{s}
angle$ (1 state)

• complete understanding likely to only come from a mapping of the full spectrum "constituent gluon"

$$(\int^{PC})_g = \int^{+-}$$

mass $\approx 1.0 - 1.5 \text{ GeV}$

color-octet g qq pair q Lightest Hybrids $S_{q\overline{q}} = 0$ $S_{q\overline{q}} = I$ IPC: 0-+, 1-+, 2-+ 1--

Lattice QCD Predictions

J. Dudek PRD 84, 074023 (2011)

Majority of experimental data to date is related to one state, the π_{L}

Key (Exotic) Decay Modes

From LQCD			$\longrightarrow h$	lodel [
	Approximate	J^{PC}	Total Width	(MeV)	Relevant Decays	Final States
	Mass~(MeV)		\mathbf{PSS}	IKP		
π_1	1900	1^{-+}	80 - 170	120	$b_1\pi^\dagger,\ ho\pi^\dagger,\ f_1\pi^\dagger,\ a_1\eta,\ \eta'\pi^\dagger$	$\omega\pi\pi^{\dagger}, 3\pi^{\dagger}, 5\pi, \eta 3\pi^{\dagger}, \eta'\pi^{\dagger}$
η_1	2100	1^{-+}	60 - 160	110	$a_1\pi, f_1\eta^{\dagger}, \pi(1300)\pi$	$4\pi, \eta 4\pi, \eta \eta \pi \pi^{\dagger}$
η_1'	2300	1^{-+}	100 - 220	170	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K^*K^{\dagger}$	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}, KK\omega^{\dagger}$
b_0	2400	0^{+-}	250 - 430	670	$\pi(1300)\pi, h_1\pi$	4π
h_0	2400	0^{+-}	60 - 260	90	$b_1 \pi^{\dagger}, h_1 \eta, K(1460)K$	$\omega\pi\pi^{\dagger}, \eta 3\pi, KK\pi\pi$
h_0'	2500	0^{+-}	260 - 490	430	$K(1460)K, K_1(1270)K^{\dagger}, h_1\eta$	$KK\pi\pi^{\dagger}, \eta 3\pi$
b_2	2500	2^{+-}	10	250	$a_2\pi^\dagger,a_1\pi,h_1\pi$	$4\pi,~\eta\pi\pi^\dagger$
h_2	2500	2^{+-}	10	170	$b_1\pi^\dagger,\ ho\pi^\dagger$	$\omega\pi\pi^{\dagger},3\pi^{\dagger}$
h_2'	2600	2^{+-}	10 - 20	80	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K_2^*K^{\dagger}$	$KK\pi\pi^{\dagger},\ KK\pi^{\dagger}$

[†]experimentally promising: few particles or narrow isobars

- Experimental requirements:
 - ability to identify multiparticle final states
 - high statistics: production of heavy states is suppressed
 - excellent PID -- kaon final states will be impossible in Phases I-III

High priority exotic search channels in initial running

Baseline GlueX Detector

- Large acceptance for both charged and neutral particles
 - PID limited: time of flight and dE/dx
- All major detector components are currently under construction
- Installation in Hall D is beginning now
- 21 collaborating institutions; 6 new since 2008

Proposed Program

	Approved		Proposed	
	Phase I	Phase II	Phase III	Phase IV
Duration (PAC days)	30	30	60	220 ^a
Minimum electron energy (GeV)	10	11	12	12
Average photon flux (γ/s)	10^{6}	10^{7}	10^{7}	5×10^7
Average beam current (nA)	50 - 200 ^b	220	220	1100
Maximum beam emittance $(mm \cdot \mu r)$	50	20	10	10
Level-one (hardware) trigger rate (kHz)	2	20	20	200
Raw Data Volume (TB)	60	600	1200	2300 [°]

- Key enhancements for the proposed Phase IV:
 - an order of magnitude more statistics than Phases I-III
 - kaon identification

- ^a includes 20 days PID commissioning ^b may be taken with amorphous radiator
- ^c assumes level-3 trigger

Progress and Limitations

- two-step analysis: event selection and amplitude analysis
- test event selection with inclusive photoproduction Monte Carlo
- Try to extract $\gamma p \rightarrow \pi^+ \pi^- \pi^+ n$
 - then (2011) achieved S/N: 2/1
 - mis-ID particles and extra π⁰'s were dominant
 - motivated dramatic software improvements (still ongoing)
- test amplitude analysis using pure signal -excellent ability to extract 1%-level exotic
- Conclusions:
 - improved reconstruction or PID (via detectors, kin. fitting, etc.) needed to reduce background
 - GlueX acceptance sufficient for amplitude analysis

GLUE citations Deriment Full "data challenges" also planned for the $b_1\pi$ channel.

Motivation for Enhanced Particle ID

- Enhanced sensitivity to small amplitudes in final states without kaons
 - obtain better signal purity
 - sensitivity to the smallest signal amplitude is limited by the largest background
 - without excellent PID, increased statistics produce diminishing returns; we are limited by systematic uncertainties on background
- Greatly expanded physics capability and discovery potential
 - ss exotic hybrids and measure isoscalar mixing angles
 - non-exotic hybrids in the spectrum of ss vector mesons; may aid in interpretation of charmonium data
 - cascade (Ξ) baryons

Isoscalar Exotic Hybrids

Y(2175): hybrid strangeonium? J. Dudek PRD 84, 074023 (2011) $e^+e^- \rightarrow \phi \pi \pi$ hybrids 0.8 Belle Collab., 2.5 PRD 80,031101(R) ס(φπ⁺π⁻) (nb) (2009) 0.6 0.4 Y(2175) 2.0 0.2 $[{\rm GeV}/c^2]$ 0 2 1.5 2.5 E_{C.M.} (GeV) ϕ radial excitation \ge 1.0 $m_{\pi} = 396 \,\mathrm{MeV}$ isoscalar ℓs 0.5 isovector YM glueball 1--M. R. Shepherd Jefferson Lab PAC39 11 June 20, 2012

- Intriguing discovery in $e^+e^- \rightarrow \phi\pi\pi$ consistent with I^{--} state Y(2175)
 - observed in three different experiments
 - similar decay mode as the Y(4260)observed in $e^+e^- \rightarrow J/\psi\pi\pi$
- Y(4260)
 - no place in spectrum of $c\overline{c}$ vector mesons
 - does not decay to $D\overline{D}$ like other vector charmonia
 - charmonium hybrid?
- With kaon ID GlueX can
 - map the ss vector meson spectrum; is Y(2175) supernumerary?
 - study the decays of the Y(2175)
 - search for exotic ss hybrid members (η_1) of the lightest hybrid multiplet

U. Loering et al., EPJ A10, 447 (2001)

- Very little is known about doublystrange cascade baryons
 - J^P is only known for three established states
 - expected to be narrow
 - PDG: "nothing of significance...added since our 1988 edition"
- Experimentally challenging -- produced typically only in decay of hyperon
 - many particle final state; large acceptance needed to determine J^P
 - small cross sections
- GlueX acceptance and intensity is ideal
 - production kinematics present a challenge to forward kaon ID

Use this and previous physics examples to benchmark the detector design

12

M. R. Shepherd Jefferson Lab PAC39 June 20, 2012

PID Designs

Gas Cherenkov Concept for GlueX Pion Veto

K kinematics in meson photoproduction

Rates and Level-3 Trigger

- Phase IV average flux of 5×10^7 γ/s in the coherent peak
 - instantaneous rates up to design limit of $10^8 \text{ } \gamma/\text{s}$
- At 10⁸ γ/s level-one trigger rate is 200 kHz; only 15 kHz comes from the coherent peak photons
- Need software trigger to match reconstructed energy with tagged energy
 - reduction in rate by factor of 10
 - 3 GB/s \rightarrow 300 MB/s
- Many benefits
 - reduced tape consumption
 - increased analysis efficiency
- Estimate 2000 of today's cores would work; less expensive than tape

Development Plan

- Forward PID
 - mature gas Cherenkov concept; also taking a fresh look at new technology
 - Established a new PID upgrade technical working group chaired by Mike Williams from MIT; participation from Florida State, Connecticut, Carnegie Mellon, Indiana, and JLab
 - how does material affect tracking and photon reconstruction efficiency?
 - what π/K separation, when combined with analysis, is sufficient?
 - consider technical risk, schedule, and cost of options
 - finalize conceptual design by the end of the calendar year
- Level-3 trigger
 - current DAQ software and architecture supports level-three concept
 - develop, test, and deploy event selection algorithms on the online monitoring farm during initial phases of GlueX running
 - based on initial testing, determine the resources needed for Phase IV level-three farm

Summary

- unique experimental opportunities for GlueX with existing program
 - conduct high-statistics study of all channels in which hadron beam experiments found any evidence for exotic hybrids
- Phase IV greatly expands the physics reach and statistical precision of the baseline program
 - order of magnitude gain in statistics over Phase I-III program
 - ability to study mesons and baryons with explicit and hidden strangeness
- Phase IV GlueX is an essential component of a global meson spectroscopy program to experimentally study the role that gluons play in the structure of matter by searching for hybrid mesons -- several key goals
 - identify both exotic and supernumerary non-exotic mesons in the spectrum
 - measure masses and widths of both isovector and isoscalar hybrids
 - use decay modes to infer internal quark structure
 - validate predictions from lattice QCD and models

Supplemental Figures and Tables

M. R. Shepherd Jefferson Lab PAC39 June 20, 2012

Single Mass Scale for Constituent Gluons

GlueX Hardware Contributions

TABLE I. A summary of GLUEX institutions and their responsibilities. The star (\star) indicates that the group has joined GLUEX after 2008.

Institution	Responsibilities	
Arizona State U.*	beamline polarimetry, beamline support	
Athens	BCAL and FCAL calibration	
Carnegie Mellon U.	CDC, offline software, management	
Catholic U. of America	tagger system	
Christopher Newport U.	trigger system	
U. of Connecticut	tagger microscope, diamond targets, offline software	
Florida International U.	start counter	
Florida State U.	TOF system, offline software	
U. of $Glasgow^*$	goniometer, beamline support	
Indiana U.	FCAL, offline software, management	
Jefferson Lab	FDC, data acquisition, electronics, infrastructure, management	
U. of Massachusetts *	target, electronics testing	
Massachusetts Institute of Technology *	forward PID, offline software	
$MEPHI^{\star}$	offline and online software	
U. of North Carolina A&T State [*]	beamline support	
U. of North Carolina, Wilmington *	pair spectrometer	
U. Técnica Federico Santa María	BCAL readout	
U. of Regina	BCAL, SiPM testing	

Cross Sections and Yields

	1.50
//c] ²	1.25
[GeV	1.00
min	0.75
	0.50
	0.25

1./)

	Cross	Approved	Proposed
Final	Section	Phase II and III	Phase IV
State	$(\mu \mathrm{b})$	$(\times 10^6 \text{ events})$	$(\times 10^6 \text{ events})$
$\pi^+\pi^-\pi^+$	10	300	3000
$\pi^+\pi^-\pi^0$	2	50	600
$KK\pi\pi$	0.5		100
$\omega_{3\pi}\pi\pi$	0.2	4	40
$\omega_{\gamma\pi}\pi\pi$	0.2	0.6	6
$\eta_{\gamma\gamma}\pi\pi$	0.2	3	30
$\eta_{\gamma\gamma}\pi\pi\pi$	0.2	2	20
$\eta'_{\gamma\gamma}\pi$	0.1	0.1	1
$\eta'_{\eta\pi\pi}\pi$	0.1	0.3	3
$KK\pi$	0.1		30

