
Hall D: Progress & Status

Eugene Chudakov Control Account Manager

DOE SC OPA Review of 12 GeV Upgrade Project Jefferson Lab November 18-20, 2014

Office of

Outline

- Introduction to Technical Scope
- Status: Progress since IPR Apr 2014
 - Construction/installation 99% complete
 - Beam commissioning ongoing
- Cost and Schedule
- Check-out / Commissioning
- Recommendations: Optimization of the Solenoid Current
- Summary

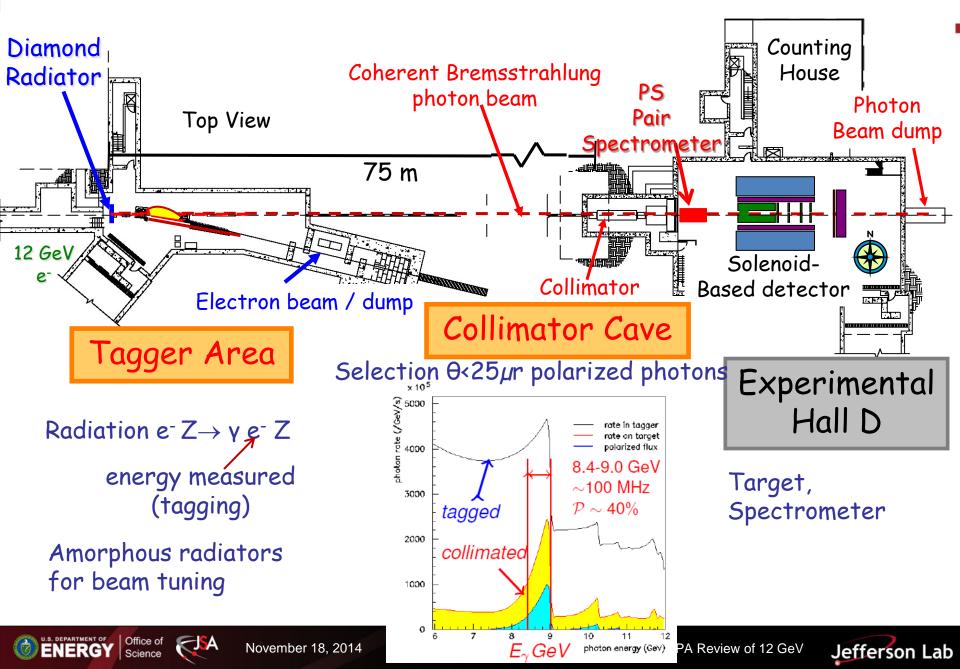
Hall D Introduction

Mission:

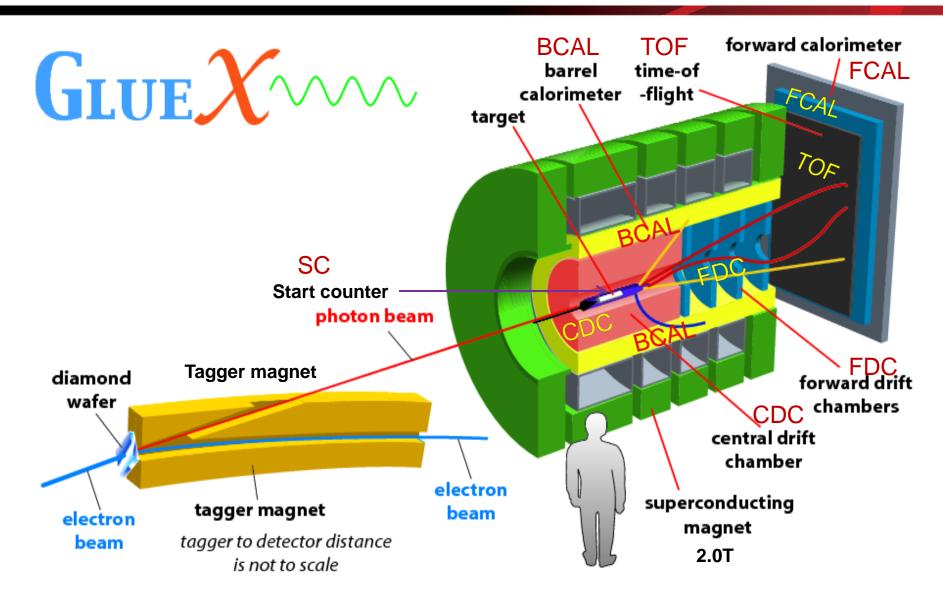
Search for gluonic excitations in the spectra of light mesons (predicted in QCD) produced by photons

Provide a facility for other photoproduction experiments

Scope – new beamline and new experimental hall and equipment


An Experiment for Spectroscopy

Photon beam with an endpoint of 12 GeV

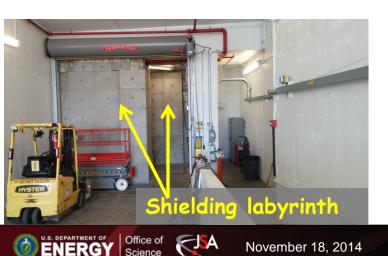

- coherent Bremsstrahlung
 → linear polarization ~40% at 8.4-9 GeV
- sensitivity to masses < 2.5 GeV/c²
- linear polarization helps to identify the J^{PC} of the final states
- > Detector requirements:
 - nearly hermetic detector for charged particles and photons
 - medium resolution: momentum (~ 1-4%), energy (2-20%)
 - identification of charged particles and π°
 - high luminosity, soft trigger
 high rate DAQ

Photon beam and experimental area

GlueX/Hall D Equipment

U.S. DEPARTMENT OF Office of Science

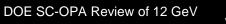
Tagger Hall


SISA

Tagger Hall Equipment

Optics and Beam Transport:

- Tagger magnet mapped at 0.6-1.7T (1.5T is nominal field for 12 GeV)
- Beamline/instrumentation installed
- First beam test in May 2014 at 10.5 GeV Beam scraping – radiation levels higher than expected
 - Ionization chambers) installed
- Shielding installed at the door
- Beam commissioning in progress
- No excessive radiation observed

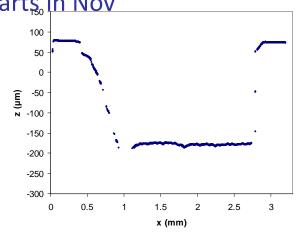


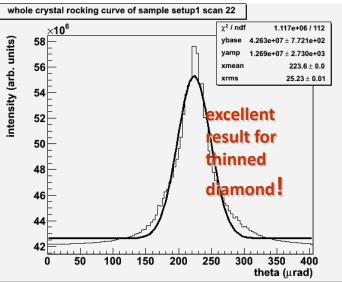
Instrumentation and Detectors:

- Amorphous radiators/harp
- Tagger hodoscope (TAGH)
 - 218 scint. counters PMTs FADC/TDC
 - Installed and tested
- Tagger μ -scope (TAGM) E_{γ} in coherent peak
 - 100x5 scint. fibers 2x2mm²
 SiPM readout
 100+20 readout channels FADC/TDC
 - Installed and tested

- Beam commissioning in progress
- Diamond radiators: delivery scheduled for March 2015

Diamond Radiators

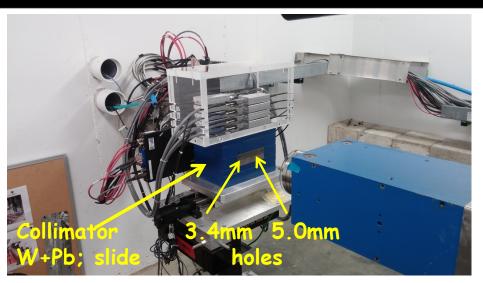

UConn

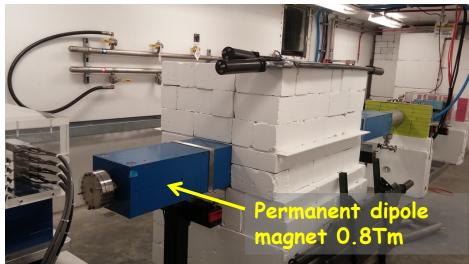

Office of

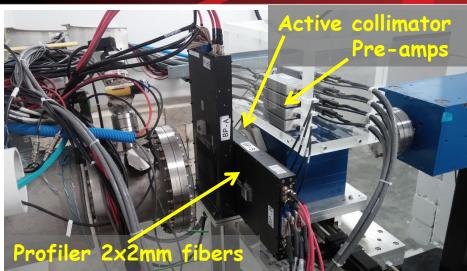
Science

- Requirements: 20µm thick, >4x4mm², rocking curve width <25µrad</p>
- Issues: a flat 20µm thick crystals warps
- Uconn developed technology for diamond thinning:
 - Start with 7x7mm² CVD (E6: 1mm thick, good lattice, measured at CHESS, procured)
 - Use industrial technology to thin it to 0.3mm
 - \blacktriangleright Use laser ablation to carve a central pit 4x4mm² down to 20µm thickness
 - Trained on 10 smaller crystals: alignment of the holder was improved
 - First 7x7mm² crystal thinned to 0.3mm Laser ablation starts in Nov

November 18, 2014

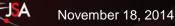






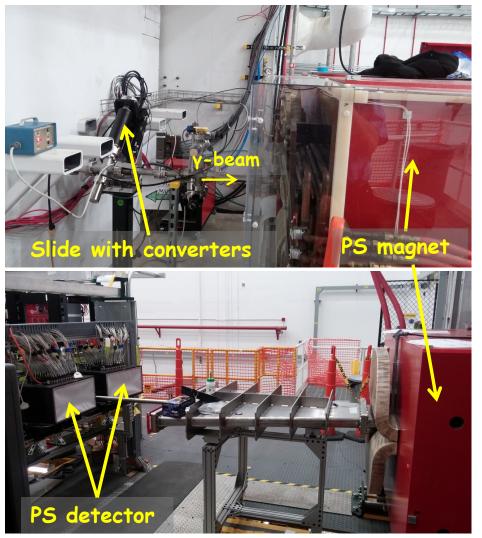
9

Collimator Cave

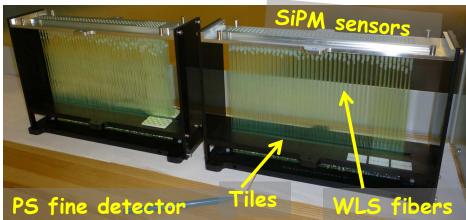


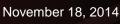
Instrumentation:

- Active collimator: photon beam position measurement
 - Secondary emission: 4 sectors (x2)
 - Aligned with a collimator hole
- Profiler: for the initial beam position measurements
 - 2x2mm² scint. fiber hodoscope
 - 64-ch PMTs, scaler readout
- Beam commissioning: working well

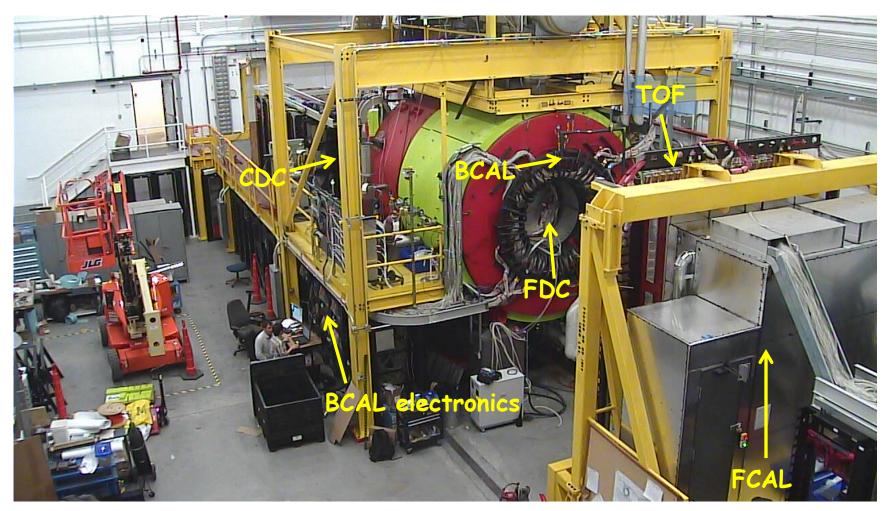

Office of

Science


ENERGY


Pair Spectrometer

- γ→e⁺ + e⁻
- Converter: 0.001 RL Al, Cu wire 0.25mm
- Magnet 18D36 ~1.6 Tm, mapped
- Detector: 2 arms; One arm covers E₀/4<E<E₀/2+∆ and includes:</p>
 - Coarse: 8 scint+PMT- FADC, TDC
 - Fine: 145 tiles 1 and 2 mm
 WLS fibers readout SiPM -> FADC
- Beam commissioning: working well



Office of

ENERGY Science

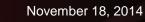
JSA

Hall D (July 2014)

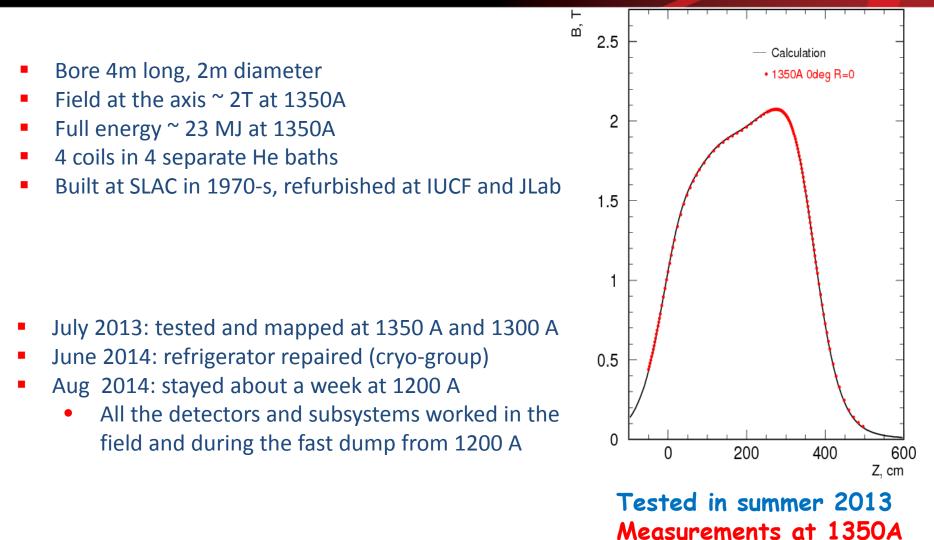
Detectors: all detectors have been tested.

JSA

Hall D (October 2014)



- October: FCAL moved to the proper position closer to the magnet.
- Commissioning with beam: all subsystems are functional, working as expected


Office of

< JSA

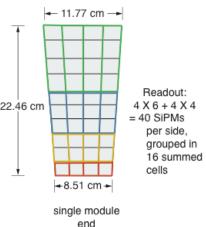
Hall D Solenoid

²⁻D calculations

November 18, 2014

Hall D Solenoid: maximum current issue

- Initial plan for GlueX: 1500 A (based on SLAC experience)
- April-May 2013 tests:
 - Reached 1500 A once
 - Next attempt two days later: quench at 1460 A at a 0.05K higher temperature
- A board of experts considered the cause of the quench:
 - No definite answer found
 - Recommended currents: 1350 A max and 1300 A for long-term operations
 - More details in the parallel presentation by Jonathan Creel
- The optimal current is being currently re-evaluated by GlueX collaboration (see the "Recommendation" section of this talk)



Office of Science

Barrel Calorimeter (BCAL)

U Regina, Santa-Maria U, JLab

390 cm long, 65 cm ID

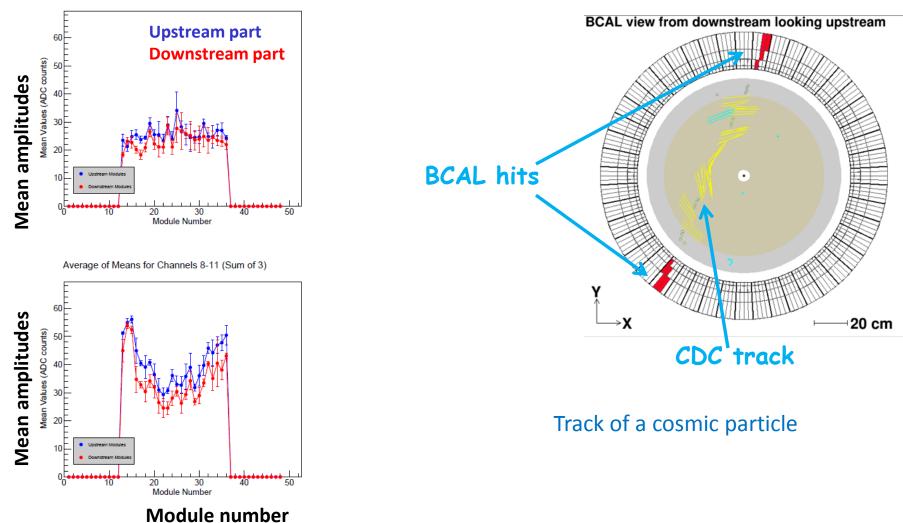
- Lead, 1mm diam. Scintillating fibers
- 191 layers Pb/Sc/Glue 37/49/14
- 48 modules, both-side readout
 One side of a module:
- 40 light guides → 40 SiPM
- 40 SiPM → 16 readout channels
- 16 fADC-250MHz, 12 F1TDC Auxiliary systems
- SiPM liquid cooling to 5°C
- Readout modules: Nitrogen flushing
- LED signals for monitoring
- Bias voltage supply for the SiPM

Office of

Science

JSA

Status:


- Tested with LEDs and cosmics
- Commissioning with beam: in progress

Barrel Calorimeter (BCAL)

Average of Means for Channels 0-3 (Sum of 1)

Average amplitudes from cosmic particles

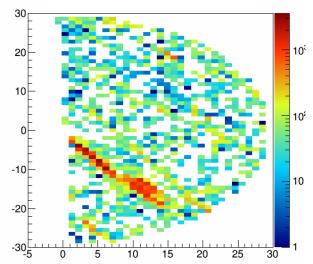
November 18, 2014

JSA

Office of

ENERGY Science

Forward Calorimeter (FCAL)


Indiana University

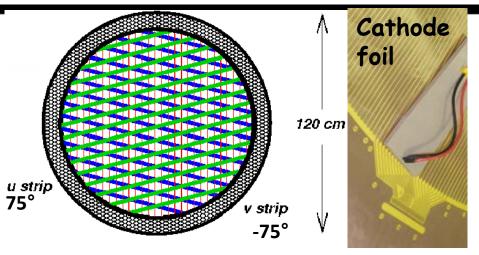
2800 lead glass blocks 4x4x45cm³ FEU-84, Cockcroft-Walton bases, readout FADC-250MHz

Cosmic event

JSA

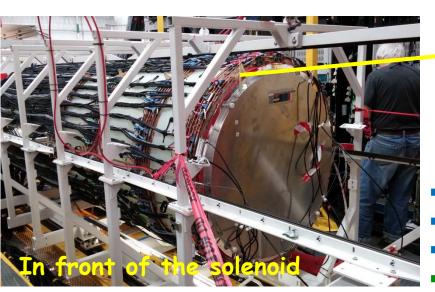
November 18, 2014

Office of


ENERGY Science

Status:

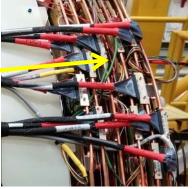
- Tested with LEDs and cosmics
- Commissioning with beam: in progress


Forward Drift Chambers (FDC)

JLab

Angular Coverage: $1^{\circ} - 30^{\circ}$ Ar/CO₂ 40/60% Pitch: 10mm wires, 5mm cathode strips 4 packages x 6 planes at 120

- 2300 anode wires \rightarrow F1TDC
- 10200 cathode strips → FADC-125MHz
 3 measured projections per plane
 Resolution: 200µm wires, 280µm strips
 Preamps: liquid cooling

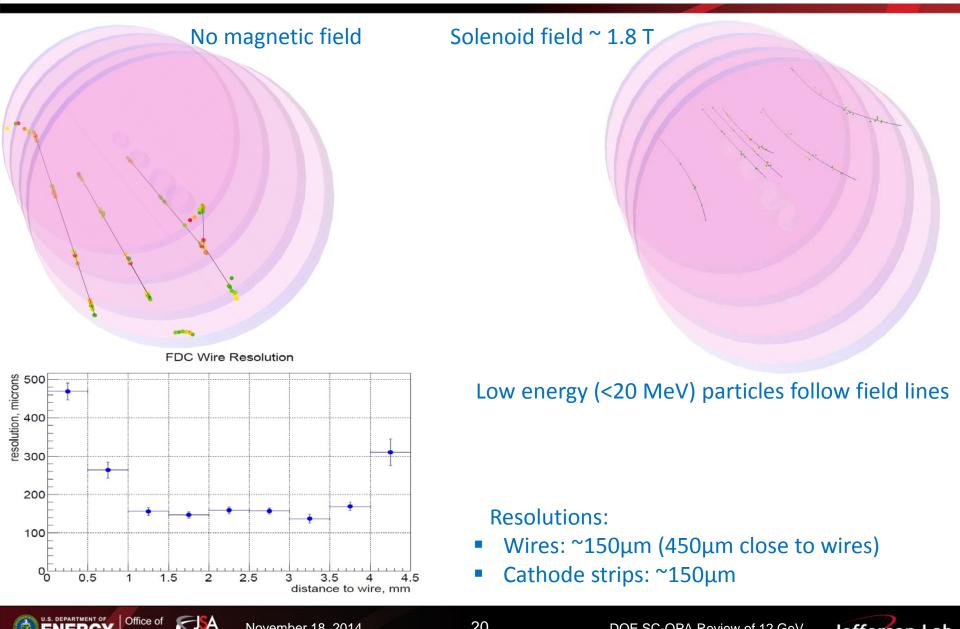


November 18, 2014

Office of

Science

ENERGY



- Thoroughly tested before installation
- One package: cosmics \rightarrow resolution/efficiency
- All channels tested in situ
- Commissioning with beam: in progress

FDC - tests with cosmics

20

November 18, 2014

ENERGY

Science

Jefferson Lab

Central Drift Chamber (CDC)

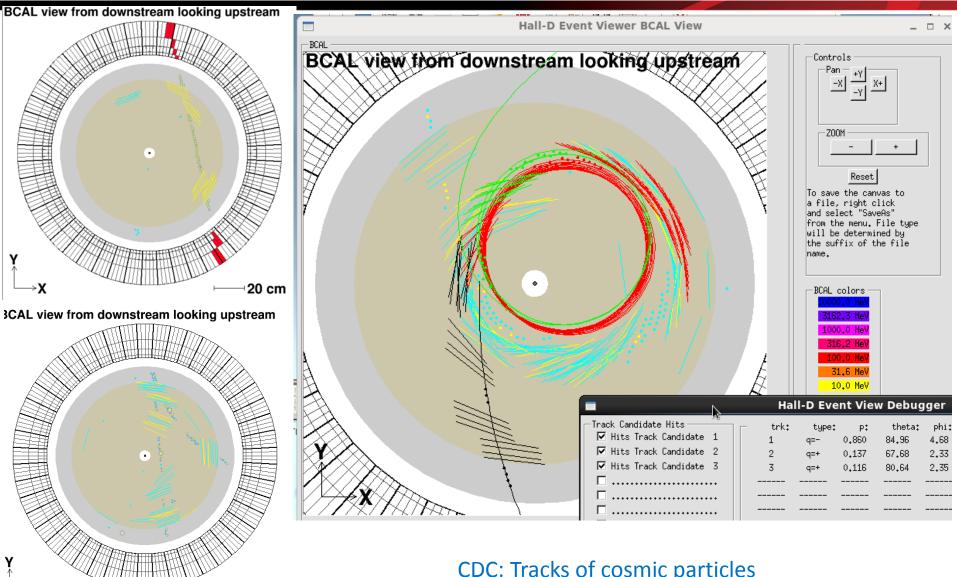
November 18, 2014

ENERGY Office of Science

JSA

Carnegie Mellon U & JLab

Angular Coverage: 6°-155° 3500 straw tubes r=8mm dE/dx for p < 450 MeV/c Gas mixture: ~60/40 Ar/CO₂ Readout: FADC-125MHz Resolution: $\sigma_{r_0} \simeq 150 \ \mu m$, $\sigma_z \simeq 1.5 \ mm$


Status:

- Tested with cosmics in situ
- **Commissioning with beam: in progress**

CDC – tests with cosmics

CDC: Tracks of cosmic particles

Office of

Scintillator Hodoscopes

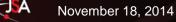
TOF – Florida State U

88 scintillator paddles, 2 PMT/paddle

Commissioning with beam: in progress

Start counter - Florida International U *30 bent scintillator counters around the target, SiPM* readout **Commissioning with beam: in progress**

23

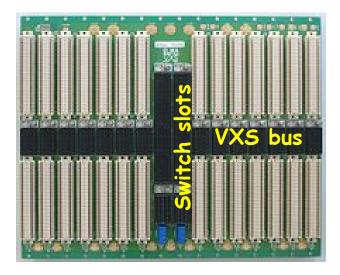

WBS HIGHLIGHTS: Major Systems

- LH2 target Has been commissioned in Hall D: cooled and filled with LH2, then removed and stored in Hall D
- Solid targets are used for the initial commissioning

Office of

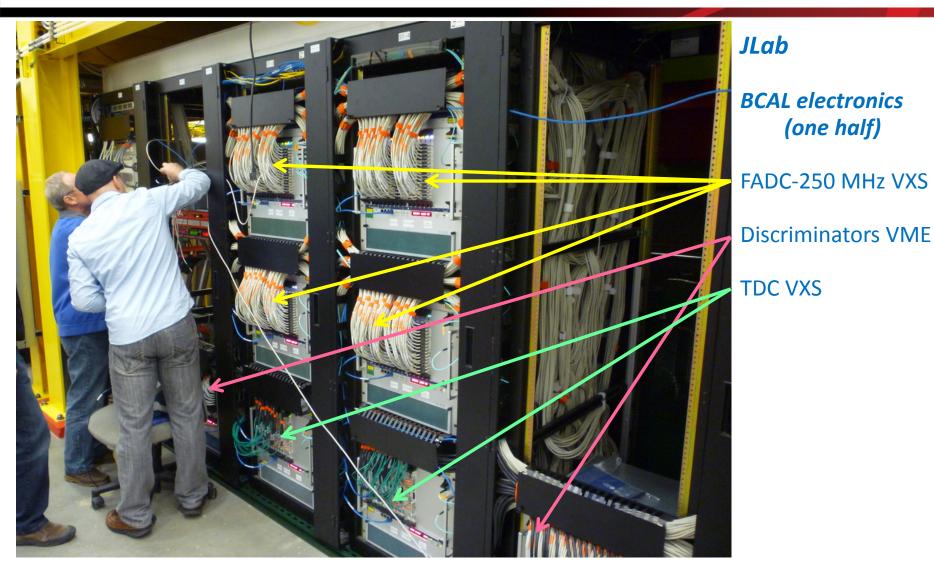
Electronics

Function	Quantities		
ASIC	2034		
Preamp Card	678		
FADC125	193		
SiPM	4216		
FADC250	321		
F1TDC	102		
CAEN1290AE/Distribution	6/1		
Discriminator (LE)	106		
Splitter (Chs.)	304 Passive		
Trigger Interface – TI/TD	56		
Signal Distribution -SD	56		
Crate Trigger Processor - CTP	26		
Sub-System Processor - SSP	8		
Global Trigger Processor - GTP	2		
Trigger Supervisor - TS	1		
Trigger Distribution – TI/TD	7		
VME Crates	12		
VXS Crates	57		
Cockcroft- Walton Bases	2800		
HV Modules	39		
HV Chassis	7		
LV Modules	46		
LV Chassis	8		
LV Distribution (FDC,CDC,BCAL)	6 + 4		
Racks	52		


November 18, 2014

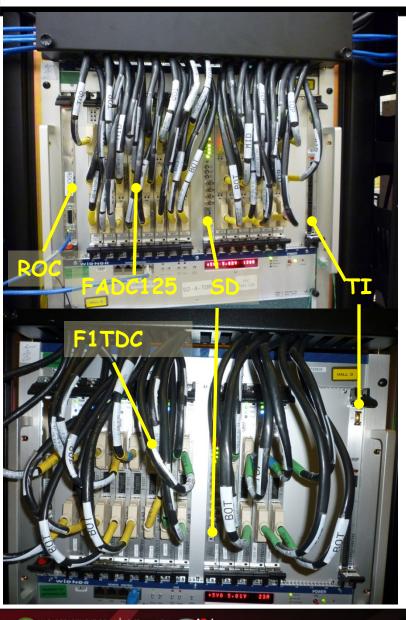
ROC (Readout Controller) 60

SJSA


ENERGY Office of Science

- Fully pipelined electronics latency ~ 3.5 μs
- VXS VMEBus Switched Serial crates and electronics boards
- Trigger and clock: VXS
- Trigger logic: FADC→VXS→CTP
- Status: Commissioning with beam: in progress

Electronics for Calorimeters

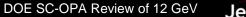

DOE SC-OPA Review of 12 GeV

JSA

November 18, 2014

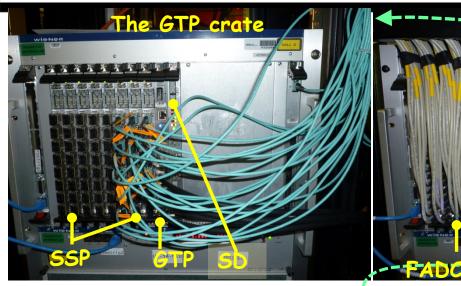
Electronics for Drift Chambers

ENERGY Science

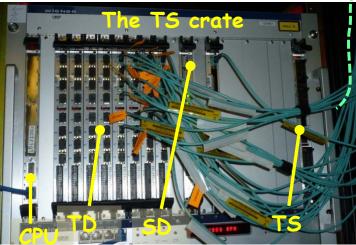

November 18, 2014

FADC-125MHz 12bit 72 channels/module

F1TDC 48 channels/module


Issues with FADC-125 MHz:

- Manufacturer: insufficient QA for soldering the FPGA chips
- FADC-125MHz 10% (40/400) of the boards were rejected → no spares (2 boards in one module)
- About 10 other modules are unstable (timeouts, depends on the firmware timing)
- Mitigation plan: 25 more modules ordered, ready by March 2015


Trigger

VME/VXS

All the modules designed at JLab

All installed

Beam commissioning: in progress

JSA

November 18, 2014

Office of

ENERGY Science

FADC-250MHz 12bit 16 channels/module

FADC250 crate

- TI: Trigger Interface module
- SD: Signal Distribution module
- CTP: Crate Trigger Processor
- SSP: Sub-System Processor
- GTP: Global Trigger Processor
- TS: Trigger Supervisor
- TD: Trigger Distribution module

Trigger delay ~ 2.7μ s – short enough to read out all crates including those in the tagger hall

28

Trigger algorithm, DAQ

- Goal: accept all photoproduction at E_v >8 GeV
- Main BG: electromagnetic interactions
- GlueX-I: beam 10MHz/GeV \approx 2kHz photoproduction

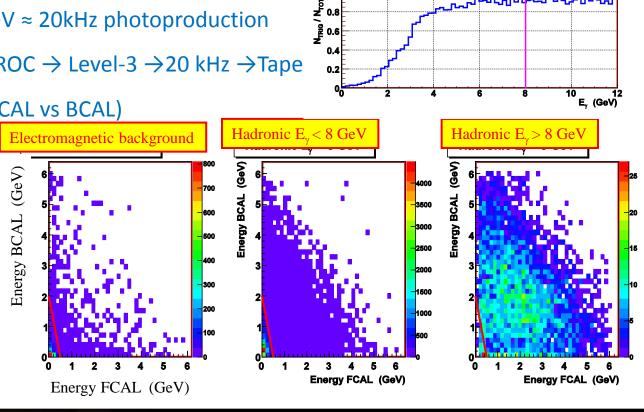
 \blacktriangleright Level-1 \rightarrow 20 kHz \rightarrow ROC \rightarrow Tape (300 MB/s)

GlueX-II: beam 100MHz/GeV ≈ 20kHz photoproduction

November 18, 2014

 \blacktriangleright Level-1 \rightarrow 200 kHz \rightarrow ROC \rightarrow Level-3 \rightarrow 20 kHz \rightarrow Tape

Trigger algorithm: Energy(FCAL vs BCAL)



Beam commissioning: in progress

Office of

Science

JSA

Photon beam energy

104

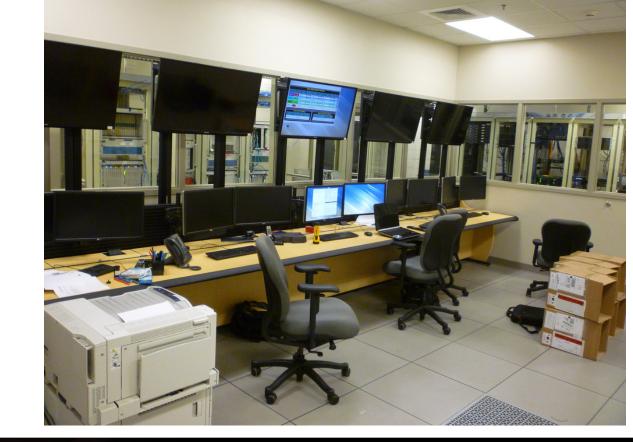
10³

10²

All hadronic interaction

ՠֈֈֈֈֈֈֈֈֈֈֈֈ

Events accepted by Level-1 trigger

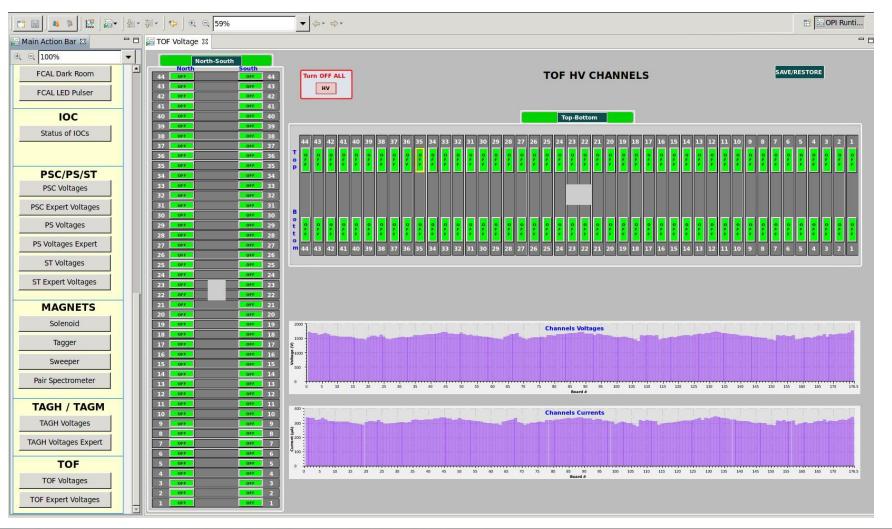

10

E, (GeV)

Jefferson Lab

Online and Slow Control

- Counting house equipped
- Online computers running
- Slow control tasks (HV, magnets, slides, cooling, environmental control, etc.) ready


Commissioning with beam: in progress

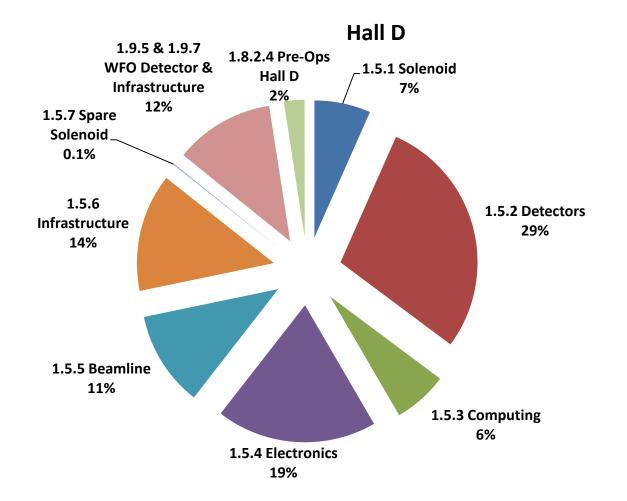
ENERGY

Example of the Controls GUIs

Example: HV control GUI for TOF

November 18, 2014

U.S. DEPARTMENT OF


Office of

Science

SJSA

Jefferson Lab

Hall D Construction & Pre-Ops Cost

32

* 1.9.5 & 1.9.7: WFO (Work for Others) - VA funding

November 18, 2014

JSA

U.S. DEPARTMENT OF Office of Science

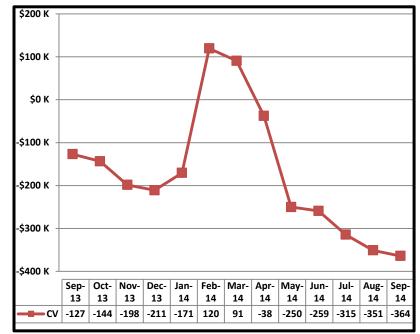
Hall D Construction & Pre-Ops Cost

WBS	Hall D	BAC Burdened & Escalated (\$K)	% Complete
1.5.1	Solenoid	3,094	100%
1.5.2	Detectors	13,321	100%
1.5.3	Computing	2,985	100%
1.5.4	Electronics	8,826	100%
1.5.5	Beamline	5,233	98%
1.5.6	Infrastructure	6,488	100%
1.5.7	Spare Solenoid	60	100%
1.5.	Total	40,008	100%
		r	
1.9.5 & 1.9.7	WFO Detector & Infrastructure	5,484	100%
1.8.2.4	Pre-Ops Hall D	1,141	84%

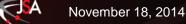
SA

Hall D: Cost Methodology

Basis of Estimate (BOE)		
	IPR Apr 2014	IPR Nov 2014
Costed	93%	99%
Obligated (including phased)	1%	1%
Quotes from vendors	0%	0%
Catalog price	1%	0%
Estimates from vendors	1%	0%
Previous JLab experience*	3%	0%
Info from other labs, universities, etc.*	0%	0%
Engineering judgment*	1%	0%



Hall D: CV and SV (Sep-13 to Sep-14)


Schedule Variance \$400 K \$200 K \$0 K -\$200 K -\$400 K -\$600 K -\$800 K -\$1,000 K -\$1.200 K -\$1,400 K Apr- May- Jun-Jul- Aug- Sep-Sep-Oct- Nov- Dec- Jan-Feb- Mar-13 13 13 13 14 14 14 14 14 14 14 14 14 159 -263 -613 -1156 -882 -833 -700 -642 -475 -302 -195 -61 - SV | 32

Cost Variance

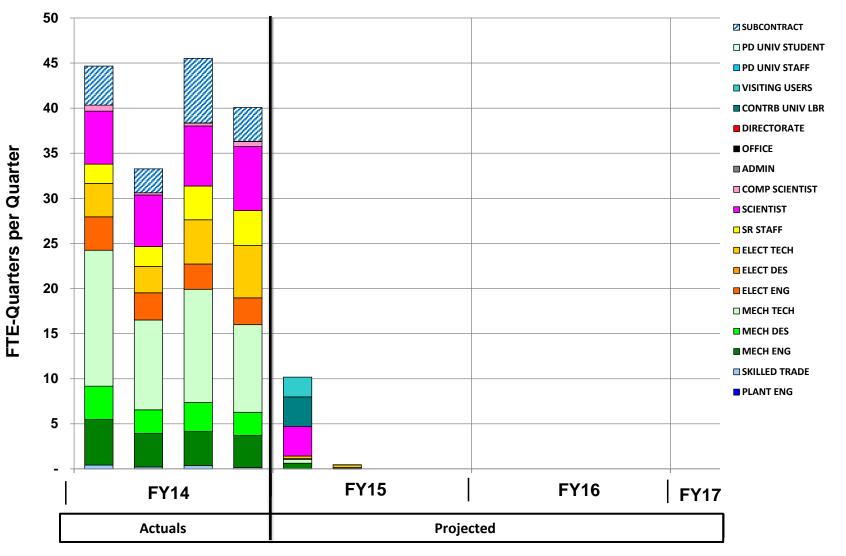
 Jan-Sep 2014 – recovered from a substantial schedule variance

Office of

Hall D: Cost Variance (FY14\$K)

WBS	Hall D	1-Sep 2013	30-Sep 2014	Delta	Reason for Variances
1.5.1	Solenoid	C	6	6	
1.5.2.	Detectors	0	51	51	Lower cost of TOF (FSU contract)
1.5.3.	Computing	C	172	172	Optimization of the structure and code
1.5.4.	Electronics	C	-49	-49	Repairs
1.5.5.	Beamline	C	-300	-300	LH2 target (-200), detectors support/testing (-50)
1.5.6.	Infrastructure	C	-244	-244	Shielding, survey & alignment, AC power
1.5.7.	Spare Solenoid	0	0	0	
1.5.	Total Construction	0	-364	-364	
1.8.2.4	Hall D Checkout & Beam Commissioning	C	-70	-70	Solenoid testing
1.9.5 & 1.9	9.7 Non-DOE	0	-68	-68	Infrastructure (space, facilities, equipment rental)
	Total Hall D	0	-503	-503	

Hall D: Estimate To Complete (AY\$K)


WBS #	Name	Open Obligations	Remaining Obligations Including Cv	ETC Total	Remaining Scope/Rationale
1.5.1	Solenoid	0	0	0	Closed Account
1.5.2	Detectors	10	0	10	Closed Account
1.5.3	Computing	17	0	17	Closed Account
1.5.4	Electronics	170	0	170	Replacement FADC125 (PO)
1.5.5	Beamline	87	41	128	Diamond thinning (UConn)
					Shielding blocks, polarimeter
1.5.6	Infrastructure	46	0	46	installation
1.5.7	Spare Solenoid	0	0	0	Closed Account
1.5	Hall D Construction Total	330	41	371	
1.8.2.4	Hall D Pre-Ops Total	7	180	187	Commissioning with beam
	Total Hall D	338	221	558	
1.9.5	Non-DOE Hall D	0	0	0	Closed Account
1.9.7	Non-DOE Infrastructure	19	0	19	Closed Account

< JSA

Hall D: Labor by Skills

Includes Pre-Ops labor

Office of

Science

CJ**S**A

Hall D: Commissioning with beam

Commissioning with beam Oct 2014 – WBS 1.8.2.4.X

OBJECTIVES: Transport an electron beam with an energy of at least 10 GeV, average current of at least 2 nA, and emittance < 20 nm-rad at tagger radiator (CD4B-VIII).

- Transport photons from the tagger radiator through a collimator to a target within Hall D spectrometer
- checkout of individual detector components with photon beam
- checkout the trigger logic for real events
- checkout all slow-control and monitoring software
- write full events to tape

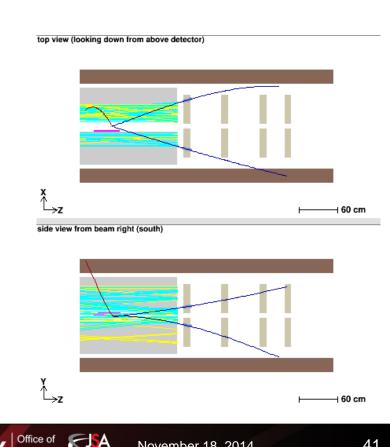
Reviews

Commissioning readiness was reviewed in 2014:

- Jul 2-3 ERR Experimental Readiness Review (ENP)
- Aug 8-9 Review of the Commissioning Plan (Internal)
- Aug 26-28 ARR Phase 3 Accelerator Readiness Review (DOE)

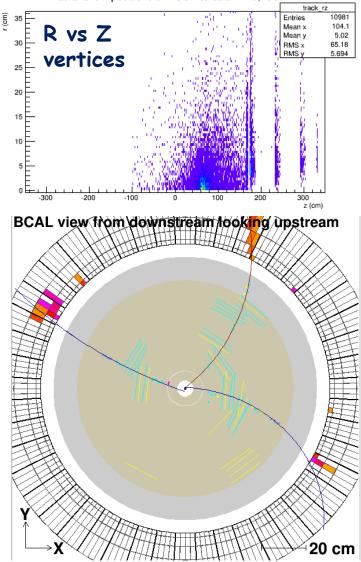
The recommendations have been addressed and implemented

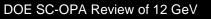
- Oct 16 ENP Commissioning Readiness Certificate issued
- Oct 27 Photon beam tune started



Commissioning: Early Data

41


- Beam through the collimator: tuned
- **Trigger: FCAL**
- Target: 1cm plastic + air
- Solenoid 1000 A


Science

November 18, 2014

Radial and z positions of POCA to beam line, r988

Recommendations

Recommendation # April 2014 IPR-08:

Carry out a study of the physics impact of running the Hall D solenoid at lower fields. •"Results should be analyzed and summarized in a document made available to Hall D experimenters. The Monte Carlo study should focus on more than one physics measurement and should address not only reductions in physics sensitivity but also potential increases in running time required to obtain a significant measurement".

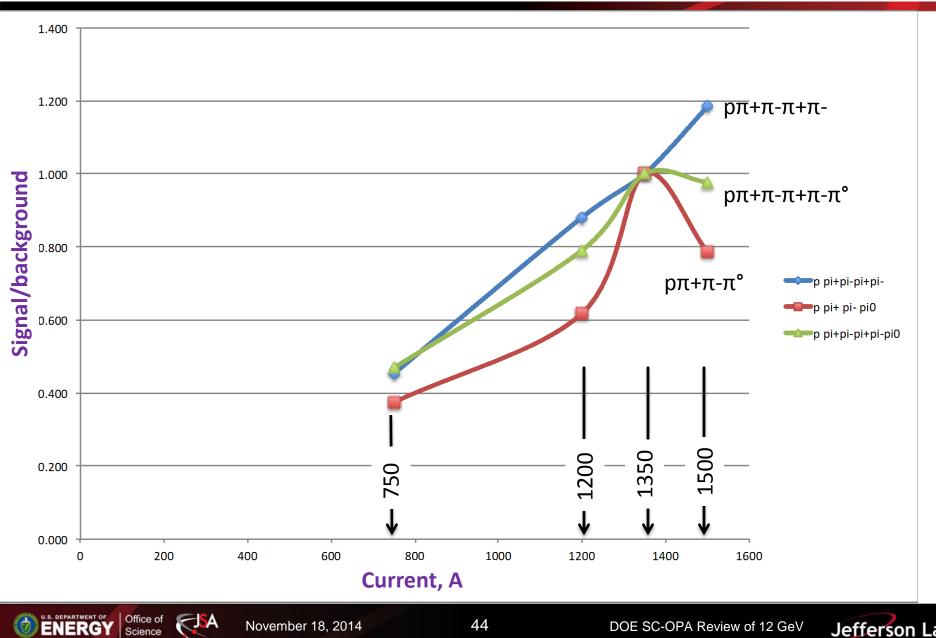
Status:

Study performed for several channels as a function of solenoid current. Optimal current depends on reaction. No overall negative impact from running at 1350A vs 1500A is expected, at least at Stage I of GlueX running. Results were presented at recent GlueX collaboration meeting, and have been published as a collaboration Document (Gluex Doc #2595).

Closed

GlueX: Optimization of the solenoid field

A set of studies has been carried out by GlueX collaboration (Gluex Doc #2595).


Effects of a lower field:

- higher physics background (coming from different reactions),
- higher reconstruction efficiency,
- higher pileup in the detectors close to the beam.

Optimal magnetic field for GlueX

November 18, 2014

Jefferson Lab

GlueX: Optimization of the solenoid field

Conclusions:

- Optimal current depends on reaction. The reactions considered seem equally promising for the GlueX program.
- No overall negative impact from running at 1350A vs 1500A is expected, at least at Stage I of GlueX (at lower intensity).
- At higher intensity (Stage II) the rates in the detectors close to the beam (primarily the FDC) may become too high at lower fields. In such a case the beam intensity has to be reduced. These effects will be studied during Stage I.

Office of Science

Summary

- WBS 1.5: 99.7% complete!
 - The remaining activities: contract with UConn diamond thinning (by April 2015), polarimeter installation (February 2015), assembling and testing the replacement 25 modules of FADC125MHz
- WBS 1.8.2.4 (pre-ops): 84% complete
 - The remaining activities: Commissioning with beam (by mid-Dec 2015)
- CV expected at completion: -\$570k (CPI=91%)
- Beam commissioning in progress. All the systems are functional.

Office of Science

