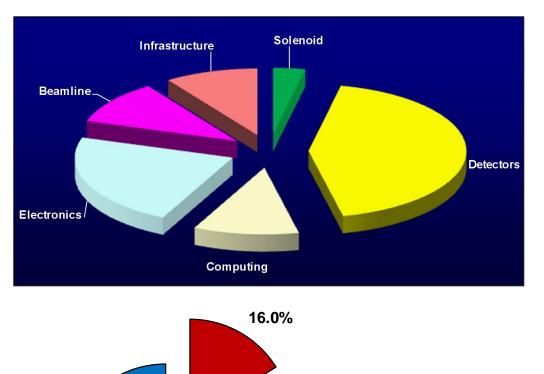
Physics Hall D WBS 1.5 Eugene Chudakov

Independent Project Review of 12 GeV Upgrade Jefferson Lab September 22-24, 2009


Thomas Jefferson National Accelerator Facility

Outline


- Introduction to Hall D
 - Scope description
 - Cost summary, changes since 2008
 - Physics goals, technical solutions
- Project Status
 - Progress with the subsystems PED/Construction
 - Design Reviews
 - Schedule
 - APPs
 - Labor
 - MOUs
 - Risk Management
- Summary

1.5 Cost Construction

Construction							
WBS	System	FY09\$k Direct					
1.5.1	Solenoid	1231					
1.5.2	Detectors	12217					
1.5.3	Computing	2954					
1.5.4	Electronics	6210					
1.5.5	Beamline	3086					
1.5.6	Infrastructure	3429					
1.5	Total	29127					

Construction

Hall D construction: 16% of total

Office OI Inuclear Phys

)f

Fear Matter - Quarks to State

Thomas Jefferson National Accelerator Facility

Hall D Cost Delta

FY09\$K Direct							
		IPR 2008	IPR 2009				
WBS	Hall D	Costbook *	Costbook **	Delta F	Reasons for Changes		
1.5.1	Solenoid	902	1,232	331	magnet controls added		
1.5.2.	Detectors	11,862	12,217	354	Scintillating Fibers (-\$111k)		
1.5.3.	Computing	2,954	2,954	0			
1.5.4.	Electronics	6,211	6,210	0	_ procurement drawings		
1.5.5.	Beamline	2,900	3,086	186			
1.5.6.	Infrastructure	2,622	3,429	806	Work Coordinator		
1.5.	Total	27,451	29,127	1,676 N	Manpower plan revised		

* IPR 2008 Costbook, dated June 30, 2008

** IPR 2009 Costbook, dated June 30, 2009

Contract Awards since June 30, 2009:

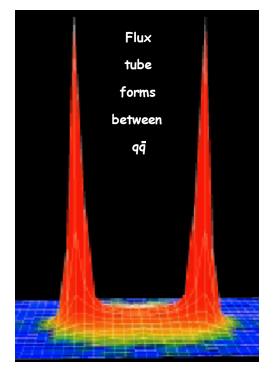
+ \$148k University of Regina-BCal Fab (CR09-043)

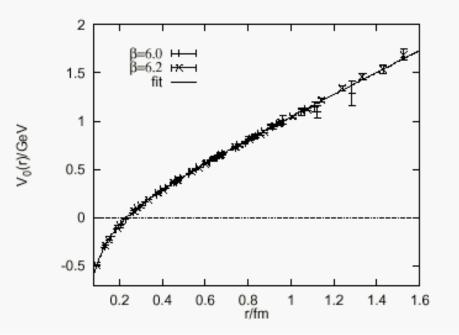
Hall D Introduction

Mission:

Search for gluonic excitations in the spectra of light mesons (predicted in QCD)

□ Scope - new beamline and experimental hall:

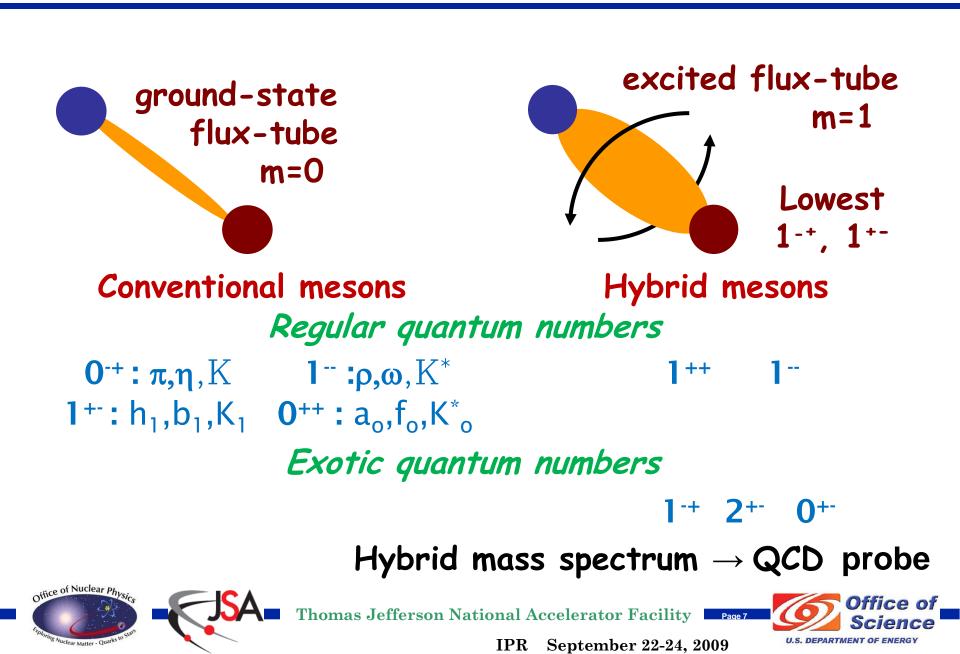

- Tagged photon beam, linearly polarized at ~ 9 GeV
- Detector:
 - nearly hermetic for charged particles / photons
 - good momentum/energy resolution
 - pipeline readout electronics, high DAQ rate ~ 200kHz


Physics: QCD

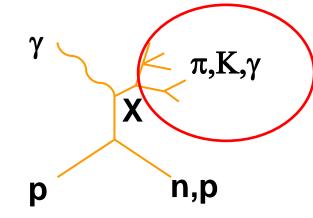
Concept of color flux tube is supported by LQCD

LQCD

Explanation of confinement



Thomas Jefferson National Accelerator Facility



Physics: Flux Tube Signature

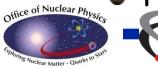
Search for QCD Exotics-Hybrid Mesons

Photoproduction

Exotics vs regular:

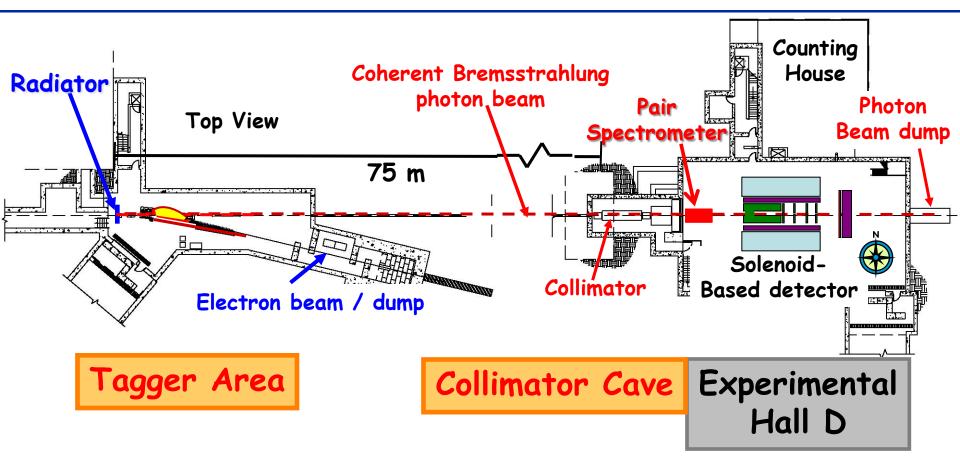
π⁻p: ≈ 1% γp: ≈ 10%

γ can be linearly polarized! helps to identify the quantum numbers

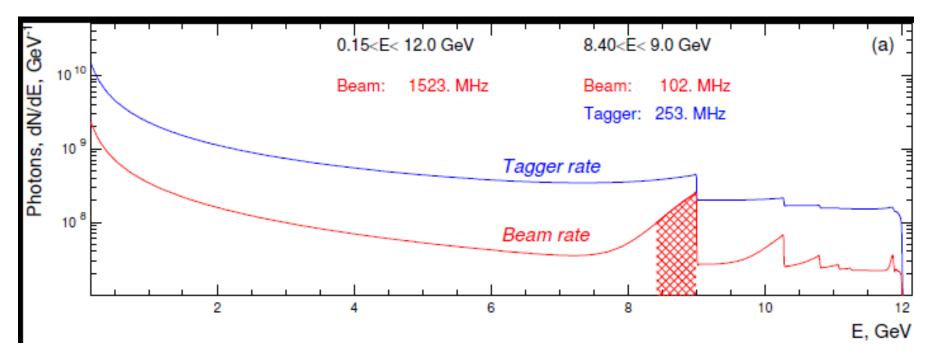

Thomas Jefferson National Accelerator Facility

Multiparticle final states: $\pi^{\pm} K^{\pm} \gamma p n K_{L}$

A Detector for Spectroscopy


- Requirements:
 - Experimental Program: light meson spectroscopy
 - photon beam of ~ 9 GeV/c, linearly polarized
 - sensitivity to masses < 2.5 GeV/c
 - sweet spot for high luminosity and polarization
 - linear polarization \rightarrow access to parity
 - Detector requirements:
 - nearly hermetic detector for charge particles and photons
 - medium resolution: momentum (~ 1-4%), energy (2-20%)
 - identification of charged particles and π^{o}
 - high luminosity
 high rate DAQ
- Design solutions
 - Solenoidal magnet
 - Drift chambers, electromagnetic calorimeters, TOF
 - Pipeline front-end electronics and DAQ

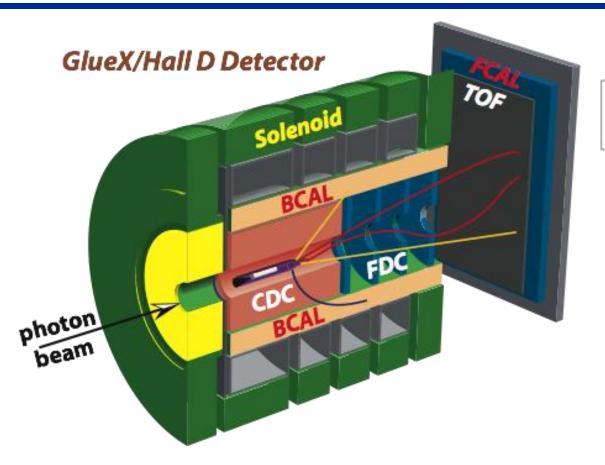
Thomas Jefferson National Accelerator Facility



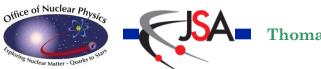
Photon beam and experimental area

Linearly Polarized Photon Beam

- 12 GeV electron beam
- diamond radiator 20 µm accurately aligned
- coherent Bremsstrahlung: 8.4 9 GeV at <25 µrad
- collimation d=3.5mm at 75m, peak area:
 - 40% linear polarization
 - 100 MHz photons at 2.2 μA


Office of Nuclear Physics

Thomas Jefferson National Accelerator Facility


GlueX/Hall D Detector

BCAL - barrel calorimeter FCAL- forward calorimeter

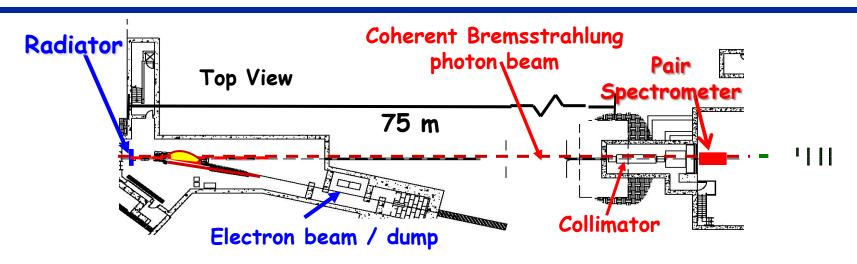
CDC - central drift chamber FDC - forward drift chambers

TOF - time-of-flight

Reviews

2008 IPR - no open recommendations

Date	Convened	Title of the review	Total	Open
2004 Oct	JLab	Hall D Detector		0
2006 Jan	JLab	Hall D Tagging spectrometer		0
2007 Mar	JLab	Hall B/D Drift Chambers		0
2008 Feb	Hall D	Hall D FDC mini	0	0
2008 Feb	JLab	Hall D Calorimeter	3	1
2008 Mar	JLab	Hall D Drift Chamber and PID	0	0
2008 May	JLab	Hall B/D Systems	0	0
2008 July	DOE	IPR Lehman review	0	0
2008 Oct	JLab	Hall D Beamline and Tagger	0	0
2009 Feb	JLab	Hall D Installation	3	1
2009 July	Hall D	Hall D Tagging Magnet	9	9
2009 July	Hall D	Hall D BCAL Readout	2	2


Office of Nuclear Physic

Thomas Jefferson National Accelerator Facility

Beamline Elements

Tagger: measure momenta of radiated electrons: σE(γ) ~ 0.1%
 Dipole magnet: 6m × 1.5T, 12 GeV bend 13.5°, FY11-12
 Fixed 140 counters + PMTs, 3-11.6 GeV, FADC+TDC, FY12
 Movable 124 counters + SiPMs, 8.4-9 GeV, FY12

Diamond radiator: 20 µm thick, FY11-12

□ Pair spectrometer: measure E_v after the collimator

- Magnet 6x30x70" from BNL, FY11-12
- Hodoscope 40 counters with PMTs, FY12

□ Miscellaneous: collimators, beam diagnostics, Fy12

Thomas Jefferson National Accelerator Facility

Reviews of the Beamline Components

□ Beamline and Tagger final design review, Oct 2008:

- > Findings:
 - 2 tagger magnets replaced by 1 magnet endorsed
 - Pair Spectrometer concept validated
- > Recommendations: none

□ Tagger magnet, Hall D convened review, July 2009:

- > Charge:
 - evaluate the specifications
 - recommend on procurement (build-to-print or performance)
 - evaluate the ES&H considerations
- Recommendations (9 in total):
 - improve the magnetic field specification *in progress*
 - update mechanical requirements in progress
 - consider calibration with particles
 - finish the drawing package on-site

Office of Nuclear Physics

Thomas Jefferson National Accelerator Facility

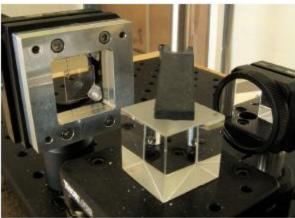
Tagger Magnet: Response to the review

Recent Optimization

- the width of the poles (400mm \rightarrow 340mm)
 - 20% lighter magnet (80t \rightarrow 64t)
 - shorter focal plane
 - loss in energy resolution $(0.02\% \rightarrow 0.1\%)$
- uniformity of the gap (0.2mm \rightarrow 1.0mm)
 - ease of fabrication
 - mechanical measurements required

More details on the design: next talk by Tim Whitlatch

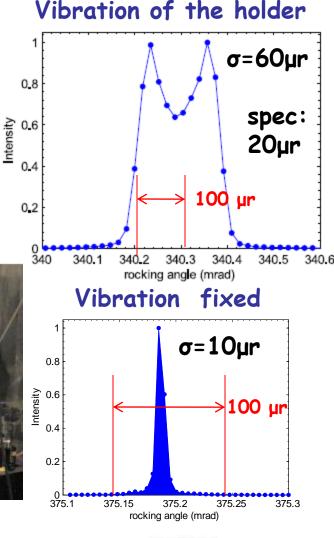
Thomas Jefferson National Accelerator Facility


Diamond Radiator

 CVD 4x4x0.4 mm³ diamond - OK!
 Test at CHESS 2009: holder's vibration

 redesign the holder (no wires/more wires)
 Michelson interferometer for checking the holder stability and diamond shape
 Heat load is being analyzed (holder design)
 Diamond thinning by ablation:

 248 nm excimer laser at UConn – not used for 10 years – testing needed


Interferometer

Excimer laser

Rocking curves

Procurement of diamonds: FY11

Thomas Jefferson National Accelerator Facility

- Solenoidal magnet: ID=200cm, B=2 T, L=400cm FY09-12
 The magnet from LASS is being refurbished (operations)
 New field configuration optimization of the yoke elements
- Central Drift Chambers (CDC) FY09-12
 - □ Barrel L=150cm, 28 layers of straw tubes
 - Resolution ~0.15mm, dE/dx
- Forward drift chambers (FDC) FY10-12
 - □ 4 units x6 planes, readout: anode drift, cathode amplitude
 - Resolution ~0.20mm, spatial points in each plane
- Barrel Calorimeter (BCAL) FY09-12
 - □ "SPACAL" 48 modules 4m long, readout from both sides
- Forward Calorimeter (FCAL) FY10-12
 - □ 2800 lead glass blocks 4cm × 4cm

OF - 88 plastic scintillators x 2 PMT FY12

Thomas Jefferson National Accelerator Facility

Solenoidal magnet: ID=200cm, B=2 T, L=400cm FY09-12 □ The magnet from LASS - is being refurbished (operations) New field configuration - optimization of the yoke elements Central Drift Chambers (CDC) FY09-12 Barrel L=150cm, 28 layers of straw tubes □ Resolution ~0.15mm, dE/dx Forward drift chambers (FDC) FY10-12 □ 4 units x6 planes, readout: anode drift, cathode amplitude □ Resolution ~0.20mm, spatial points in each plane Barrel Calorimeter (BCAL) FY09-12 □ "SPACAL" 48 modules 4m long, readout from both sides Forward Calorimeter (FCAL) FY10-12 2800 lead glass blocks 4cm x 4cm OF - 88 plastic scintillators x 2 PMT FY12 Thomas Jefferson National Accelerator Facility

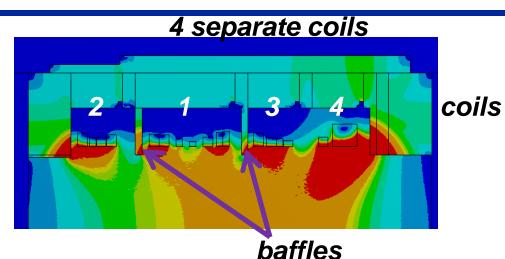
DEPARTMENT OF ENERG

- Solenoidal magnet: ID=200cm, B=2 T, L=400cm *FY09-12*
 - □ The magnet from LASS is being refurbished (operations)
 - New field configuration optimization of the yoke elements
- Central Drift Chambers (CDC) FY09-12
 - □ Barrel L=150cm, 28 layers of straw tubes
 - Resolution ~0.15mm, dE/dx
- Forward drift chambers (FDC) FY10-12
 - □ 4 units x6 planes, readout: anode drift, cathode amplitude
 - Resolution ~0.20mm, spatial points in each plane
- Barrel Calorimeter (BCAL) FY09-12
 - □ "SPACAL" 48 modules 4m long, readout from both sides
- Forward Calorimeter (FCAL) FY10-12
 - □ 2800 lead glass blocks 4cm × 4cm

TOF - 88 plastic scintillators x 2 PMT FY12

Thomas Jefferson National Accelerator Facility

- Solenoidal magnet: ID=200cm, B=2 T, L=400cm *FY09-12*
 - □ The magnet from LASS is being refurbished (operations)
 - New field configuration optimization of the yoke elements
- Central Drift Chambers (CDC) FY09-12
 - □ Barrel L=150cm, 28 layers of straw tubes
 - Resolution ~0.15mm, dE/dx
- Forward drift chambers (FDC) FY10-12
 - □ 4 units x6 planes, readout: anode drift, cathode amplitude
 - Resolution ~0.20mm, spatial points in each plane
- Barrel Calorimeter (BCAL) FY09-12
 - □ "SPACAL" 48 modules 4m long, readout from both sides
- Forward Calorimeter (FCAL) FY10-12
 - 2800 lead glass blocks 4cm × 4cm



OF - 88 plastic scintillators x 2 PMT FY12

Solenoid

coil 1

Coil refurbishing on BIA (operations)

- Coil 1 (Jlab) : short fixed, the coil is reassembled
- Coil 3 (IUCF) : new LN2 shield is being installed
- Coil/yoke configuration modified reevaluation of the forces Minimizing the forces and mitigation of potential problems:
 - > coils 1 and 2 are swapped
 - > steel baffles added to the yoke
 - > reinforcement of coil 2 is being evaluated
- Equipment for the controls is being purchased (12 GeV CR09-27)
- Preparations for individual coil testing in FY10

Thomas Jefferson National Accelerator Facility

Reviews of Tracking Detectors

□ FDC technology review, Feb 2008:

Endorsed:

- wire & cathode readout
- the design level of details
- Concerns (no official recommendations):
 - importance of building a full-scale prototype
 - construction prototype is being built
 - transition from PED to construction
 - detailed documentation in progress
- Drift chambers and PID, Mar 2008:

> Findings:

- the design meets the physics requirements
- the fabrication plans are realistic (manpower a concern)
- kaon identification will require a Cherenkov detector
- > Advice (no official recommendations):
 - continue pre-production testing in progress (CR09-27),
 - pay attention to coordination and integration
 - addressed in the Installation Review

Thomas Jefferson National Accelerator Facility

Tracking: Forward Drift Chamber

Connecting

tubes

Forward Drift Chamber Angular Coverage: 1° - 30° Gas Mixture: 40:60 Ar/CO₂ Readout: wire timing, cathode strips amplitudes - combining projections Resolution: 200 μm

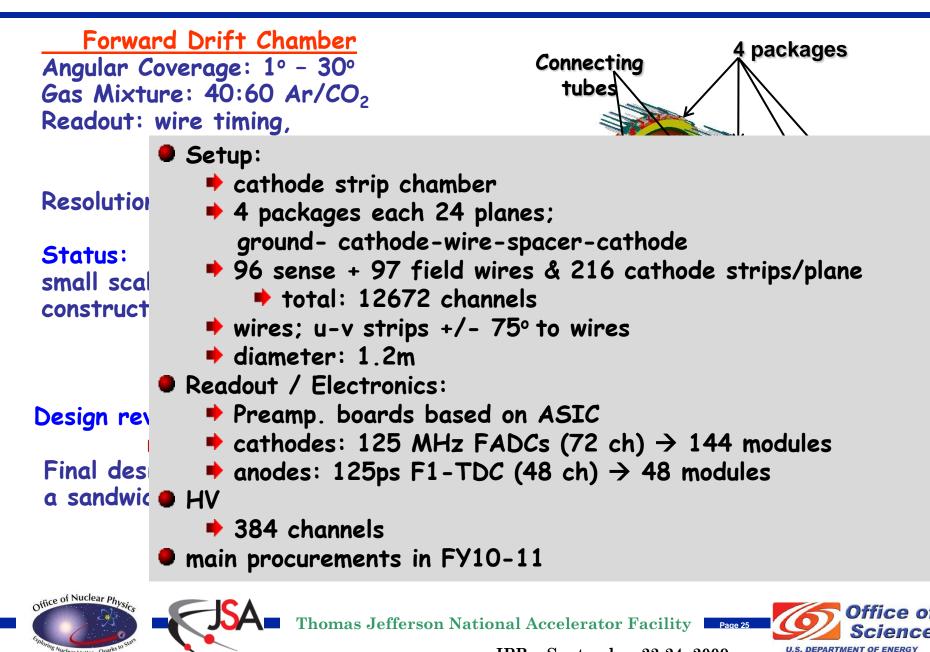
Status:

small scale prototype has been tested construction prototype underway (added by CR09-27) MC: no staggering needed (would have changed the design)

Design review 2007 recommendation: reduce material (closed March 2008) Final design of the frames: a sandwich of 2 G10 skins and rohacell foam cathode: Cu 5µm→2µm on 25 µm Kapton 1 package: 6 planes, active area 0.5%→0.3% RL

Thomas Jefferson National Accelerator Facility

Assy tooling


4 packages

IPR September 22-24, 2009

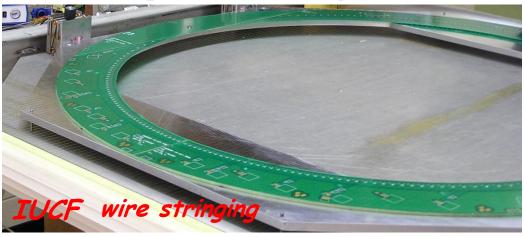
Cables

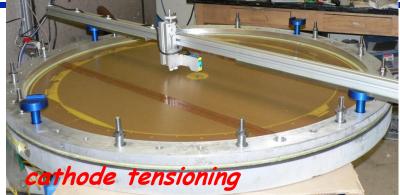
Outer skin

Tracking: Forward Drift Chamber

FDC progress: construction prototype

• 4 planes of full scale cathodes: Cu 2 µm and 5 µm finalizing construction procedures cathode tensioning Seo 8 wire stringing cathode glued to the fra wire board cathode frame

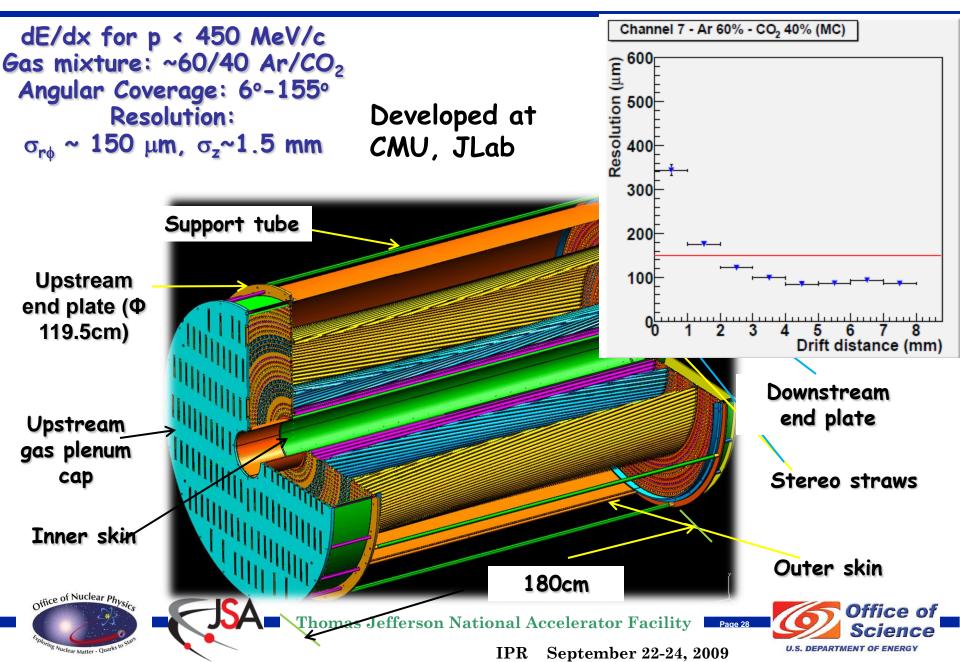


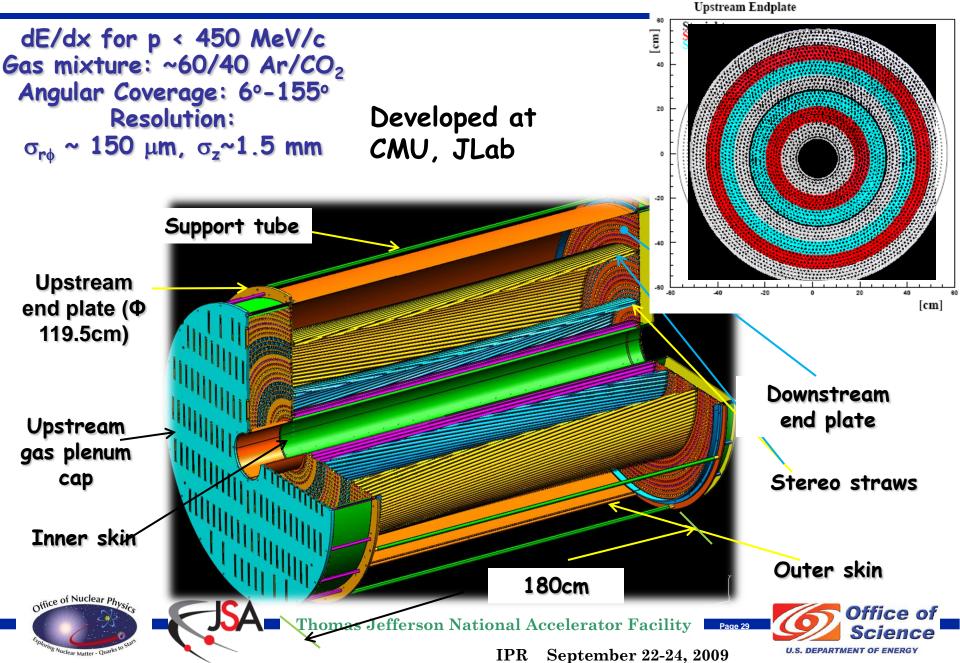

2 cathodes glued back-to-back

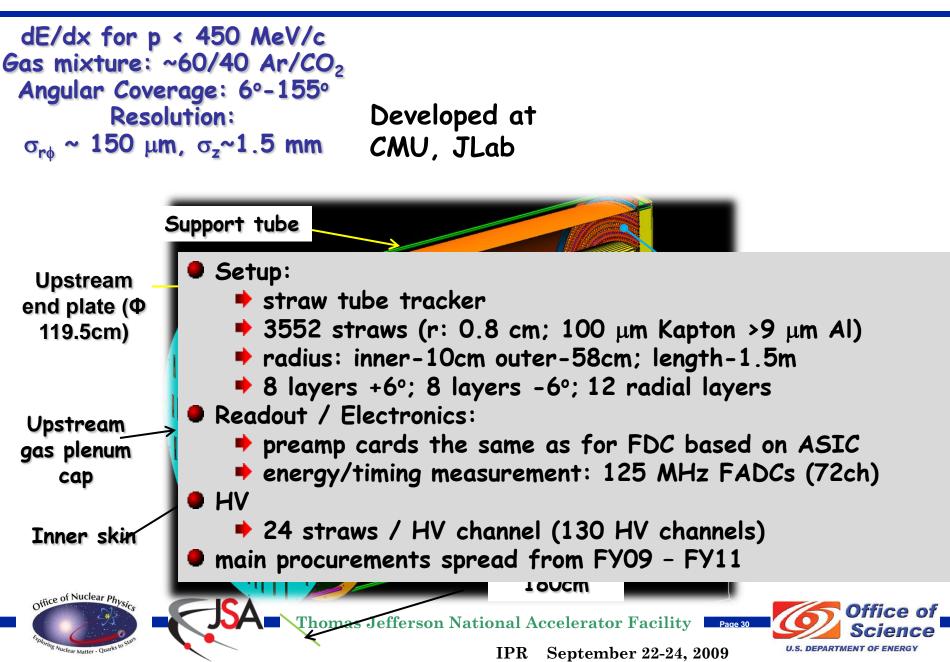
RA.

FDC progress: construction prototype

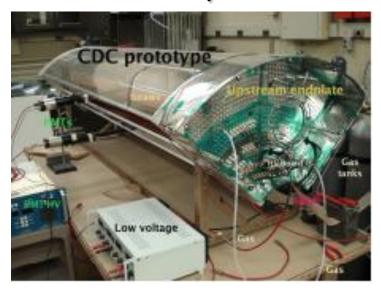
4 planes of full scale
cathodes: Cu 2 µm and 5 µm
finalizing construction procedures

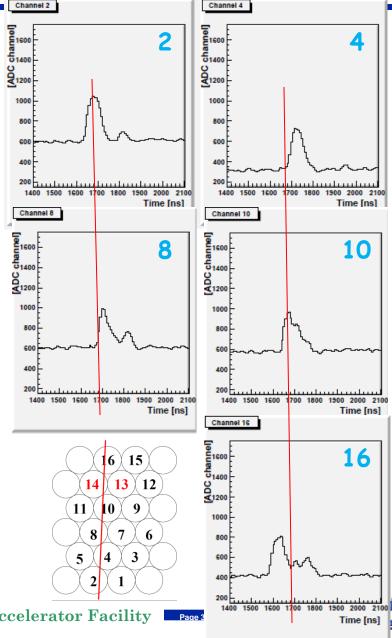



Thomas Jefferson National Accelerator Facility


Central Drift Chambers

Central Drift Chambers


Central Drift Chambers



CDC progress

Status:

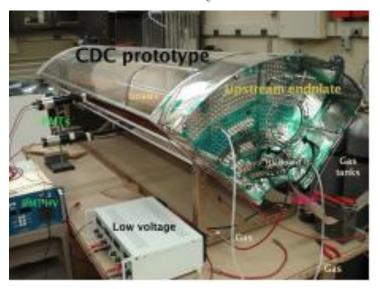
full scale prototype 16 straws fully instrumented

Office of Nuclear Physics

uclear Matter - Quark

Thomas Jefferson National Accelerator Facility

IPR

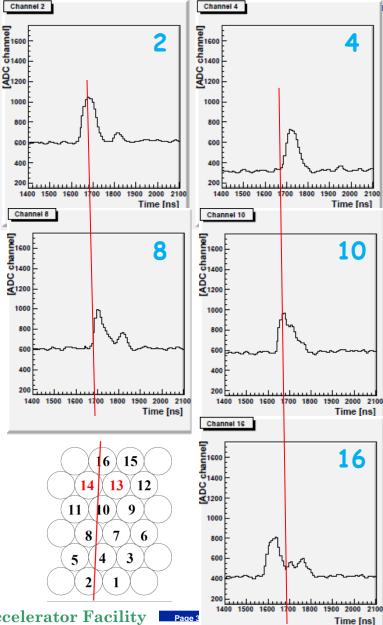

September 22-24, 2009

0.3. DEFARIMENT OF ENERGY

CDC progress

Status:

full scale prototype 16 straws fully instrumented



- vendor selection (straws): radiation test under way
- tolerances finalized
- endplates contract awarded
- feedthroughs open solicitation

Thomas Jefferson National Accelerator Facility

Reviews of Calorimeters

Calorimetry, Feb 2008:

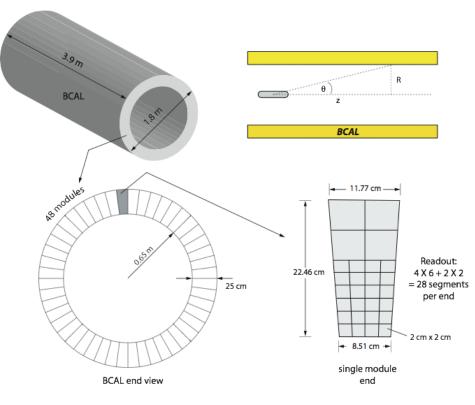
- > Findings:
 - the design meets the specifications
 - the reviewers provided many suggestions and comments
- Recommendations:
 - address logistics of BCAL module construction *Closed. Contract awarded to Regina*
 - develop a backup plan for SiPM readout
 Closed by July 2009 review (fine-mesh PMT)
 - full characterization of SiPMs: continuous progress

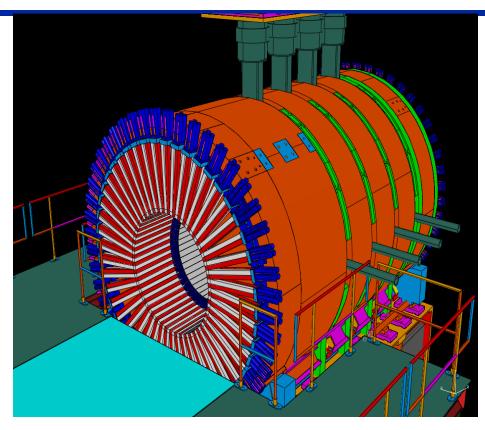
□ BCAL readout, July 2009 (two solutions presented):

- Comments/suggestions:
 - Fine-mesh PMT (FMPMT) provide a viable backup plan
 - use either SiPMs or FMPMTs avoid hybrid solutions

Recommendations (SiPM solution seems more promising):

- develop a plan for characterization of SiPM prototypes
- select SiPM/FMPMT only after the previous step



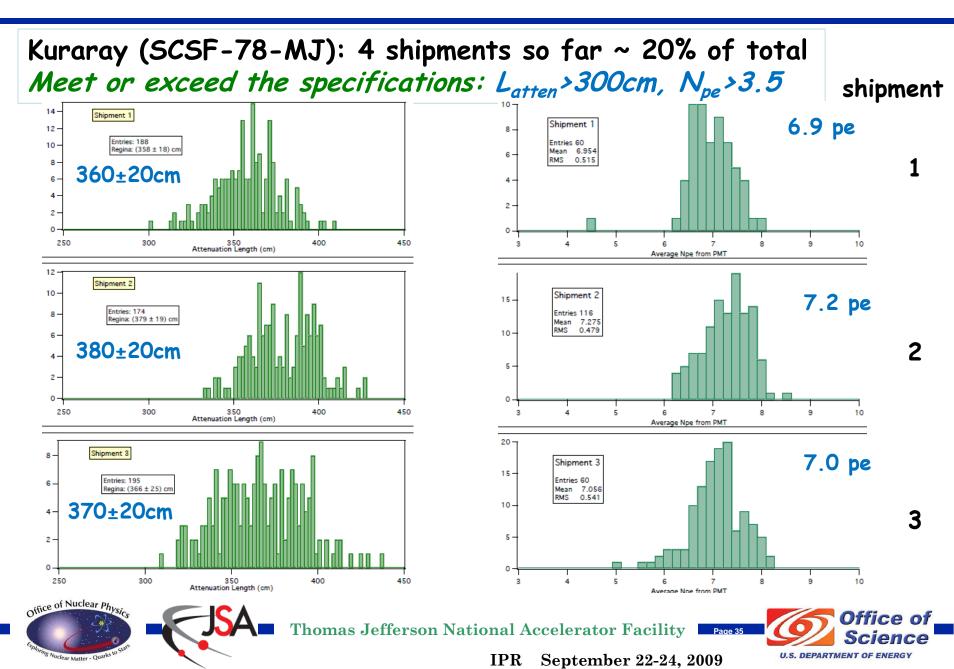

Final decision by Jan 2010 Thomas Jefferson National Accelerator Facility

Barrel Calorimeter (BCAL)

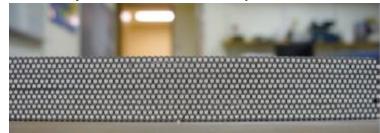
BCAL design modeled after KLOE EMC; 48 modules (phi sectors)

Module: 191 layers Pb/Sc/Glue 37/49/14

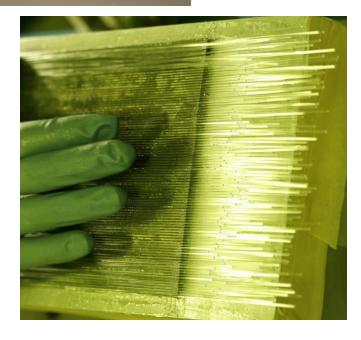
Fibers: contract awarded (Kuraray)
Lead: contract awarded



Thomas Jefferson National Accelerator Facility



BCAL: Scintillating Fibers QA


BCAL: Modules Construction

- Contract awarded to University of Regina
- Construction prototype is being built
 - >70% complete (140 layers out of 190)

Summer 2009

Thomas Jefferson National Accelerator Facility

IPR

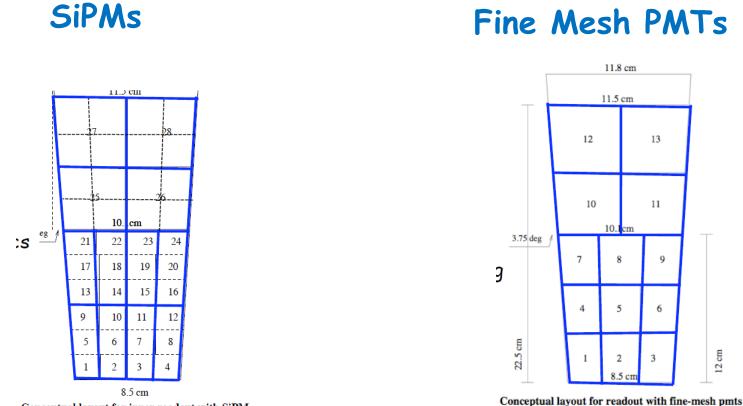
BCAL: Light sensors

SiPMs

- Two companies: Hamamatsu and SensL
- Arrays (4x4) of 3x3mm² cells
- Size ~ 1.2 x 1.2 cm²
- Gain > 10⁶
- Insensitive to B-fields
- Dark rate ~ 100 MHz
- Operation depends on temperature

Fine Mesh PMTs

- Hamamatsu H8409-70
- 1.5" PMT: R7761-70
- Photocathode D = 27mm
- 19 stages
- Max. anode I = 10µA
- Gain ~ 3x10⁶ (0.5 T)
- Dark rate ~ 0.5 kHz



Thomas Jefferson National Accelerator Facility

Conceptual layout for inner readout with SiPM

3840 SiPMs 1152 FADC250 channels Summing boards (3,4)

1248 FMPMT 1248 FADC250 channels

H8409-70

Thomas Jefferson National Accelerator Facility

G

12

SiPMs

- Short light guides
 Acceptance loss ~ 10.5–11°
- + Minimum energy ~ 50 MeV
- Saturation effects >4 GeV
- Needs cooling/stabilization
- Radiation hardness <40Gr
- Unproven at large scale
- Combining 3-4 SiPM→readout

Early tests of SenSL arrays

- not meeting specs
- too high noise (unless cooled)
- poor uniformity

Fine Mesh PMTs

- Long light guides (losses)
 Acceptance loss ~ 9.5-11°
- Minimum energy ~60 MeV
- Poor time resolution at low E
- Long light guides mechanical complexity

Viable backup option

SiPMs

- Short light guides
 Acceptance loss ~ 10.5–11°
- + Minimum energy ~ 50 MeV
- Saturation effects >4 GeV
- Needs cooling/stabilization
- Radiation hardness <40Gr
- Unproven at large scale
- Combining 3-4 SiPM→readout

New Arrays: vendors promise to remove deficiencies

- SenSL improved technology
- Hamamatsu needs only thermal stabilization (no cooling)

Fine Mesh PMTs

- Long light guides (losses)
 Acceptance loss ~ 9.5-11°
- Minimum energy ~60 MeV
- Poor time resolution at low E
- Long light guides mechanical complexity

Viable backup option

IPR September 22-24, 2009

Thomas Jefferson National Accelerator Facility

SiPMs

- Short light guides
 Acceptance loss ~ 10.5–11°
- + Minimum energy ~ 50 MeV
- Saturation effects >4 GeV
- Needs cooling/stabilization
- Delivery of 10 final samples by Oct 15, 2009:
 - SENSL
 - Hamamatsu
- Tests (complete by Jan 2010):
 - Noise/gain/PDE
 - Uniformity
 - Radiation hardness

Thomas Jefferson National Accelerator Facility

Long light guides (losses) Acceptance loss ~ 9.5-11°

- Minimum energy ~60 MeV

Fine Mesh PMTs

- Poor time resolution at low E
- Long light guides mechanical complexity

Viable backup option

FCAL module: LG, PMT, shield, base

Rectangular PMT housing allows for more modular and durable base electronics allowing a sandwich of three boards rather than single flexible PCB.

Paul Smith is nearly complete with redesign of the CW base.

Besides switching to three separate boards, nearly every component has changed in the five years since initial design.

Office of Nuclear Physics

Thomas Jefferson National Accelerator Facility

FCAL Progress (Indiana)

- Mechanical design nearly final
- Magnetic shielding being tested
- New CW base design: almost complete (10 prototypes Jan 2010)
- CAN control system is progress
- Progress with radiation tests of lead glass
- 64-module prototype:

32 modules are loaded and operational

Ethernet-CAN gateway

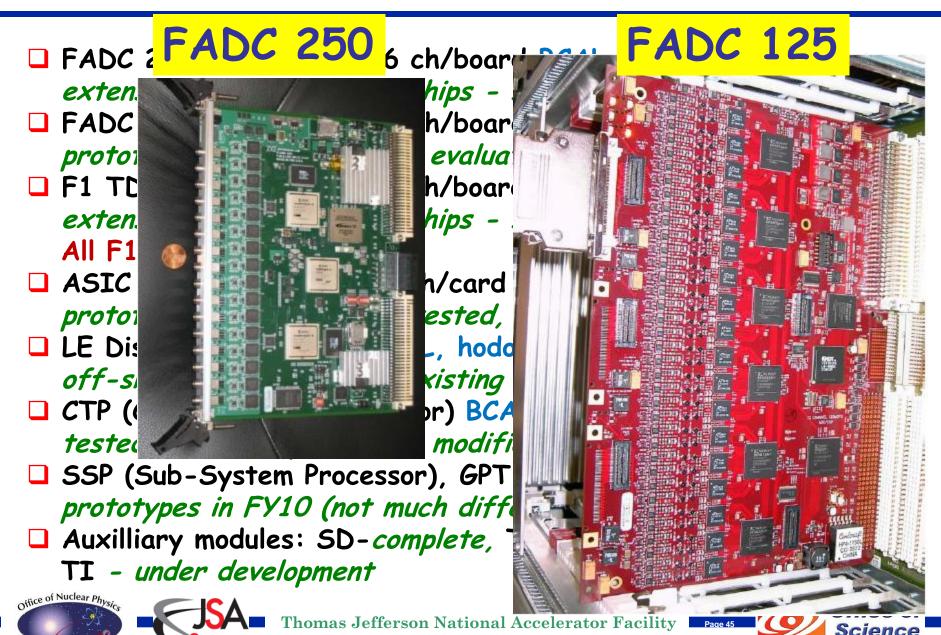
Construction starts in FY10

Thomas Jefferson National Accelerator Facility

CW Base Power Interlock

Cosmic Trigger

PMT

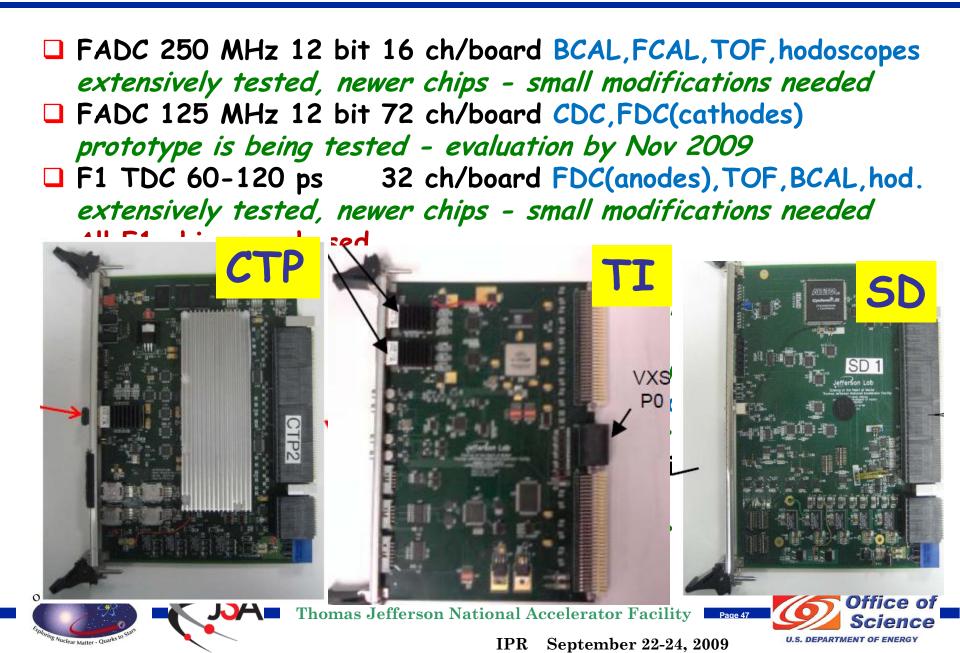

□ FADC 250 MHz 12 bit 16 ch/board BCAL, FCAL, TOF, hodoscopes extensively tested, newer chips - small modifications needed □ FADC 125 MHz 12 bit 72 ch/board CDC, FDC(cathodes) prototype is being tested - evaluation by Nov 2009 □ F1 TDC 60-120 ps 32 ch/board FDC(anodes), TOF, BCAL, hod. extensively tested, newer chips - small modifications needed All F1 chips purchased □ ASIC preamps 24 ch/card FDC,CDC prototype cards are being tested, evaluation by Sep 2009 LE Discriminators TOF, BCAL, hodoscopes off-shelf from CAEN, or existing module from JLab □ CTP (Crate Trigger Processor) BCAL/FCAL crates tested, newer chips - small modifications needed □ SSP (Sub-System Processor), GPT (Global Trigger Processor) prototypes in FY10 (not much different from CTP) □ Auxilliary modules: SD-*complete*, TI - 1-st revision tested, TI - under development

Office of Nuclear Physics

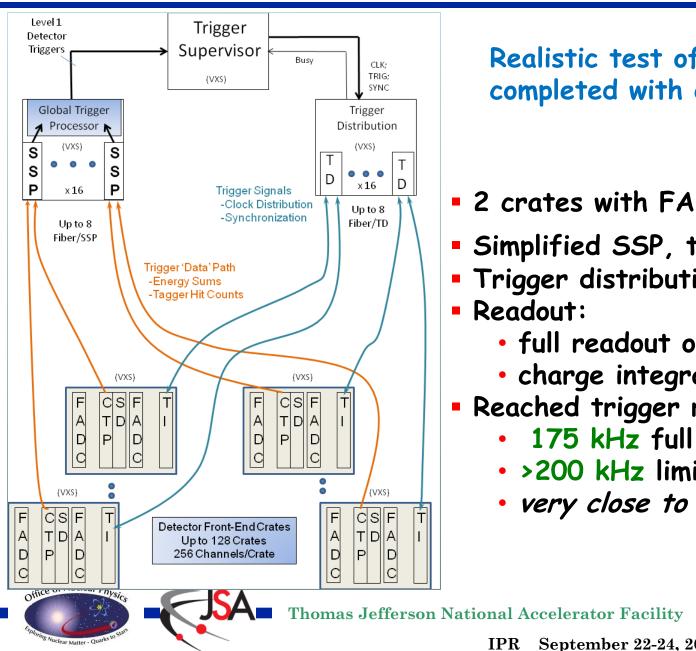
Thomas Jefferson National Accelerator Facility

IPR September 22-24, 2009

U.S. DEPARTMENT OF ENERG


□ FADC 250 MHz 12 bit 16 ch/board BCAL, FCAL, TOF, hodoscopes extensively tested, newer chips - small modifications needed □ FADC 125 MHz 12 bit 72 ch/board CDC, FDC(cathodes) prototype is being tested - evaluation by Nov 2009 □ F1 TDC 60-120 ps 32 ch/board FDC(anodes), TOF, BCAL, hod. extensively tested, newer chips - small modifications needed All F1 chips purchased □ ASIC preamps 24 ch/card FDC,CDC prototype cards are being tested, evaluation by Oct 2009 LE Discriminators TOF, BCAL, hodoscopes off-shelf from CAEN, or existing module from JLab □ CTP (Crate Trigger Processor) BCAL/FCAL crates tested, newer chips - small modifications needed □ SSP (Sub-System Processor), GTP (Global Trigger Processor) prototypes in FY10 (not much different from CTP) Auxilliary modules: SD-complete, TI - 1-st revision tested, TD - under development

Office of Nuclear Physics

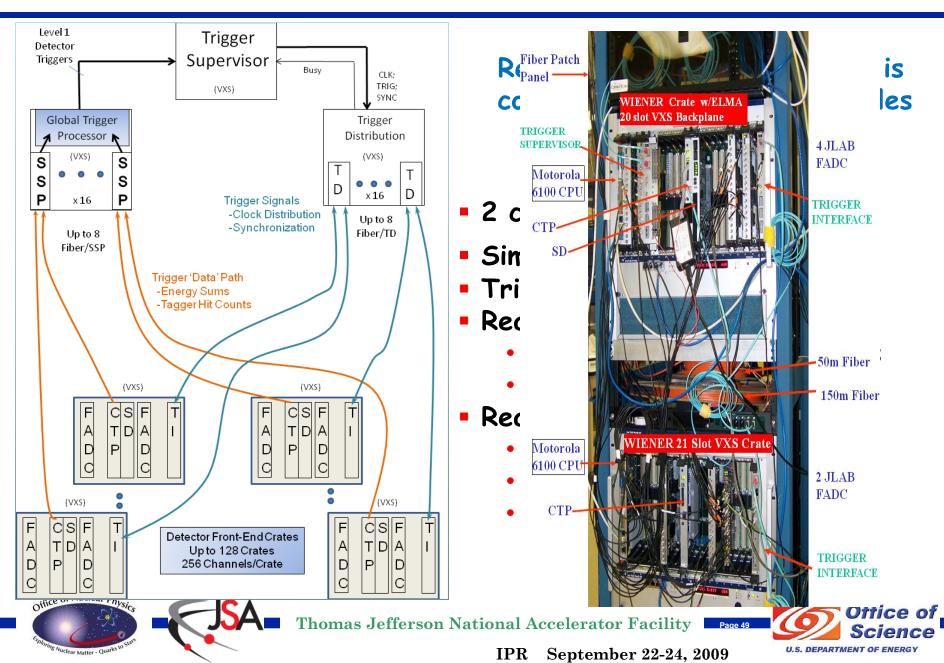


Thomas Jefferson National Accelerator Facility

Trigger: progress since IPR-2008

Realistic test of the concept is completed with existing modules

- 2 crates with FADC, CTP etc
- Simplified SSP, trigger: $\Sigma A > x$
- Trigger distribution


Readout:

- full readout of 4ns samples
- charge integration in FPGA
- Reached trigger rates:
 - 175 kHz full readout
 - >200 kHz limited readout
 - very close to the specs

September 22-24, 2009 IPR

Trigger: progress since IPR-2008

WBS 1.2.3 PED

~98% finished by mid-September 2009

Ongoing PED:

> ASIC tests, to be finished by Oct 1 (the end of P6 PED)

> some fabrication drawings need input before completion Two outstanding tasks:

Final characterization Silicon PMT samples

Tagger magnet review recommended to produce the fabrication drawings for this magnet in-house (this can be viewed as part of a construction task, does not affect PED)

More on the construction drawings in the next talk by Tim Whitlatch

Thomas Jefferson National Accelerator Facility

Summary of Tracked Recommendations

D-Det08:

- > 1: Logistics of BCAL construction: contract awarded closed
- > 2: Backup plan for SiPM readout: FMPMT endorsed closed
- > 3: Full characterization of SiPM: finish by Dec 09 open

D-Inst09:

> 1: *Hire Work Coordinator:* CR09-27, started Sep 1- *closed*

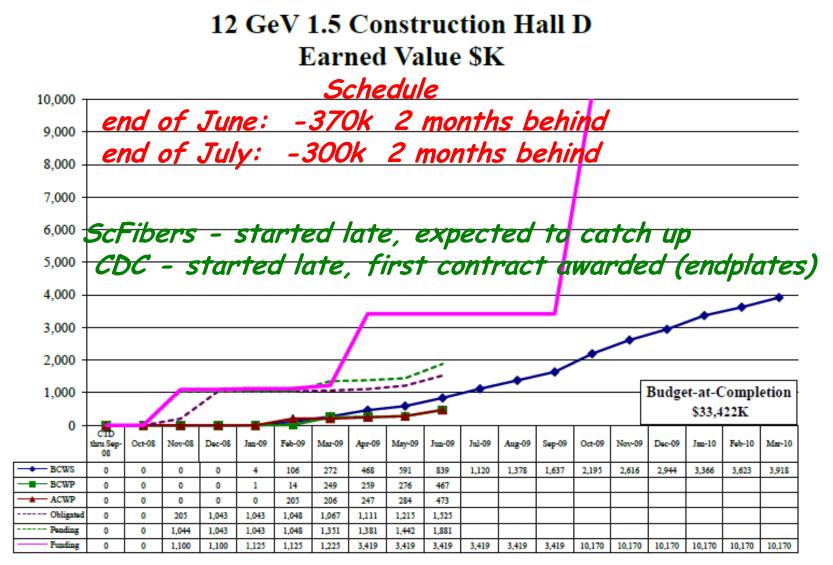
- closed

- > 2: Installation staging area: plan developed
- > 3: Work Coord. reevaluate the plans: started open

Construction Schedule

	FУ	09	10	11	12	13	14
1.5 CONSTRUCTION HALL D		FY2009 F F F F F	FY2010 F F F F	FY2011 F F F F F	FY2012 F F F F F	FY2013 F F F I	FY2014
1.5.1 SOLENOID							
1.5.1 SOLENOID							
1.5.2 DETECTORS							
1.5.2.1 TRACKING							
1.5.2.2 CALORIMETRY							
1.5.2.3 PARTICLE ID							
1.5.3 COMPUTING							
1.5.3.1 DAQ							
1.5.3.2 ONLINE COMPUTING							
1.5.3.3 OFFLINE COMPUTING							
1.5.4 ELECTRONICS							
1.5.4.1 FADC							
1.5.4.2 TDC							
1.5.4.3 TRIGGER							
1.5.4.4 CRATES/RACKS		*****	·÷⊦⊦÷÷÷⊦				
1.5.4.5 LOGIC, HV							
1.5.5 BEAMLINE							
1.5.5.1 TAGGER							
1.5.5.2 TARGET							
1.5.5.3 BEAMLINE COMPONENTS		┙┽┽┽┽ ╸╘┿┙╸╘┿┿┾╘		····			
1.5.6 INFRASTRUCTURE							
1.5.6.1 ASSEMBLY							
1.5.6.2 INSTALLATION							
1.5.6.3 CRYOGENICS							

Office of Nuclear Phys



Thomas Jefferson National Accelerator Facility

1.5 Hall D Construction Earned Value

Office of Nuclear Phy

ear Matter - Q

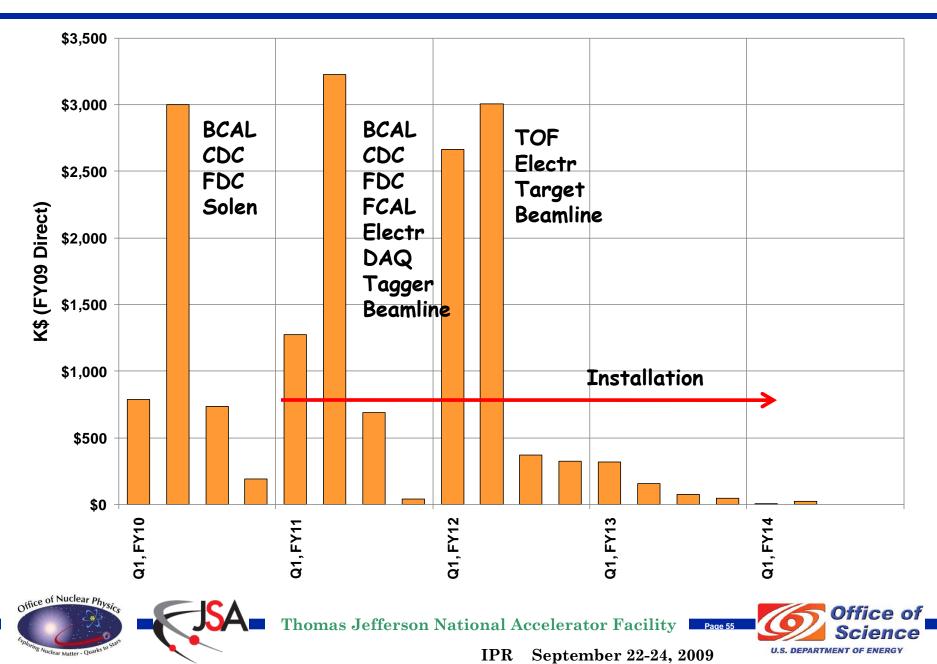
Thomas Jefferson National Accelerator Facility

2

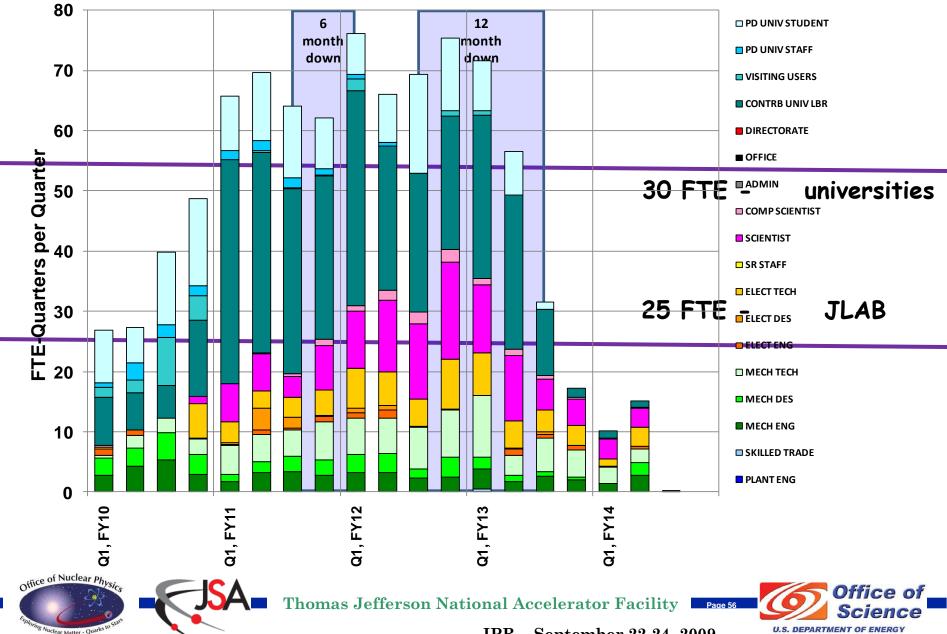
WBS 1.5 Major Procurements 1-SEP-09 Status

WBS CONTRACT

PHASE **STATUS**


1.5.2 1.5.2	Hall D Barrel Cal Fibers Hall D Barrel Cal Fabrication	Phase 1 of 3 Phase 1 of 4	Awarded Awarded
1.5.2	Hall D Procure SiPMTs	-	Advanced Procurement Plan In Progress
1.5.2	Hall D Central Drift Chamber	Phase 1 of 3	Specification Complete *
1.5.2	Hall D Forward Calorimeter	Phase 1 of 4	Open Solicitation

Endplates - contract awarded Feedthroughs - PR submitted CMU contract - PR submitted



Hall D Procurement/Expense Obligation Profile

WBS 1.5 Total Labor by Skill

IPR September 22-24, 2009

Active collaboration/MOU Status

University	MOU type	year	WBS	status/update
Regina	construction	2009	BCAL	active
CMU	construction	2009	CDC	active
Indiana U	construction	2009	FCAL	active
FSU	collaboration	2003	TOF	active/in progress
FIU	collaboration	2003	Start Counter	active/in progress
SMU (Chile)	collaboration	2007	BCAL	active
CNU	JLab	2009	electronics	active
Catholic	collaboration	2004	Tagger FA	active
Connecticut	collaboration	2003	Tagger MA, radiator	active
Athens	collaboration	2003	Monitoring for calor.	active
UMass	collaboration	2009	Target, electronics	in progress
NCUW - 👌	construction	2009	Pair spectrometer	in progress
NCA&T	collaboration	2009	Beam line	in progress

- JSA

Thomas Jefferson National Accelerator Facility

Risk Management

			Likelihood Assessment		Impact Assessment		ent	
WBS Item	Description	Risk Rating	Technical	Cost	Schedule	Technical	Cost	Schedule
1.5	Construction Hall D							
1.5.1	Solenoid	Low	Low	Low	Low	Low	Low	Low
1.5.2	Detectors	Low	Low	Low	Low	Low	Low	Mod
1.5.3	Computing	Low	Low	Low	Low	Low	Low	Low
1.5.4	Electronics	Low	Low	Low	Low	Low	Mod	Low
1.5.5	Beamline	Low	Low	Low	Low	Low	Low	Low
1.5.6	Infrastructure	Low	Low	Low	Low	Low	Low	Mod

Risk mitigation plan is updated at least twice a year Overall risk ratings are low

- 1.5.2 Contributed manpower was a concern, mitigated by CR09-27 BCAL readout decision by Jan 2010 Tracking the cost as low risk since June 2009
- 1.5.4 New densely populated electronics (FADC-125 72) under tests Mitigation: produce less-dense modules
- 1.5.6 Mitigation: Work coordinator hired; detailed installation plans are being developed

Office of Nuclear Physics


Thomas Jefferson National Accelerator Facility

Hall D Cost Methodology

Basis of Estimate (BOE):

- 1% *F1 chips* Costed Obligated 11% Sc. Fibers, BCal Quotes from vendors 0% Catalog price 4% Estimates from vendors/ 33% consultants Previous JLab experience 25% Information from other labs, **6%** Universities, etc.
- Engineering judgment

Thomas Jefferson National Accelerator Facility

IPR September 22-24, 2009

20%

SUMMARY

Ded:

- > expected to be finished in Sept 2009
- Outstanding issue:
 - Characterization of the SiPM by Jan 2010
- **Construction**:
 - BCAL: fibers/lead contracts awarded, modules construction - contract awarded, ordering the light sensors - Feb 2010
 - > CDC, FCAL open solicitations, procurements started
 - FDC construction prototype Dec 2009
 - Tagger package for "build-to-print" Oct 2010
 - > Electronics: F1 chips purchased, trigger scheme tested

Clear Physics IFR September 22-24, 2009

SUMMARY (continued)

□ Manpower:

- Hired: Hall leader, Work coordinator
- > Interviewing:
 - 2 scientists, started interviewing
 - 1 engineer, advertised
 - 2 techs, started interviewing

Collaboration growing: UMass, NCUW, NCA&T

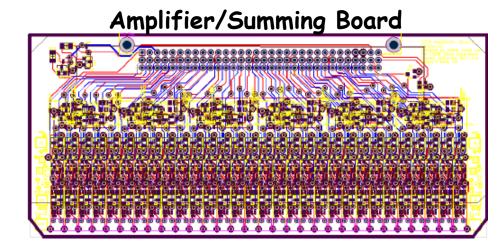
Appendix

Office of Nuclear Physics JSA Thomas Jefferson National Accelerator Facility Nuclear Matter - Quarks

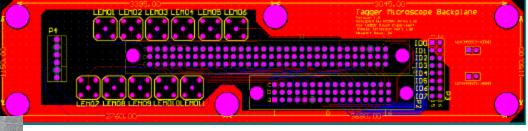
September 22-24, 2009 IPR

Hall D: Detector Design Parameters

Capability	Quantity	Range
Charged particles	Coverage	1° < θ < 160°
	Momentum Resolution (5°-140°)	σ _p /p = 1 – 3%
	Position resolution	σ ~ 0.15-0.20 mm
	dE/dx measurements	20 < θ < 160 °
	Time-of-flight measurements	σ _{τοF} ~ 60 ps; σ _{BCal} ~ 200ps
	Barrel time resolution	σ _t ^γ < (74 /√E ⊕ 33) ps
Photon detection	Energy measurements	2° < θ < 120°
	FCAL energy resolution (E > 60 MeV)	σ _E /E = (7.3/√E⊕ 3.5)%
	BCAL energy resolution (E > 40 MeV)	σ _E /E =(5.54/√E⊕ 1.6)%
	FCAL position resolution	σ _{x,y,} ~ 0. 64 cm/√E
	BCAL position resolution	σ _z ~ 0.5cm /√E
DAQ/trigger	Level 1	< 200 kHz
	Level 3 event rate to tape	~ 15 kHz
	Data rate	300 MB/s
Electronics	Fully pipelined	250 / 125 MHz fADCs, TDCs
Photon Flux	Initial: 10 ⁷ γ/s for 8.4 <e<9.0 gev<="" td=""><td>Final: 10⁸ γ/s</td></e<9.0>	Final: 10 ⁸ γ/s
Splenning Nuclear Matter - Quarks to State	IPR September	22-24, 2009


Tagger: Scintillator "microscope"

Amplifier board: design complete


- Up to 30 SiPM 2x2 mm²
- 2-stage fast amplifiers
- Summing circuitry
- Health sensors (<0.5°C)
- Control board: design complete
 - FPGA

CC

- Ethernet
- V_{bias} via DAC: 14 bits 32-chan
- Health sensors
- Test in Hall B: March 2010
- Construction: FY12

Backplane

Fiber cutting and polishing

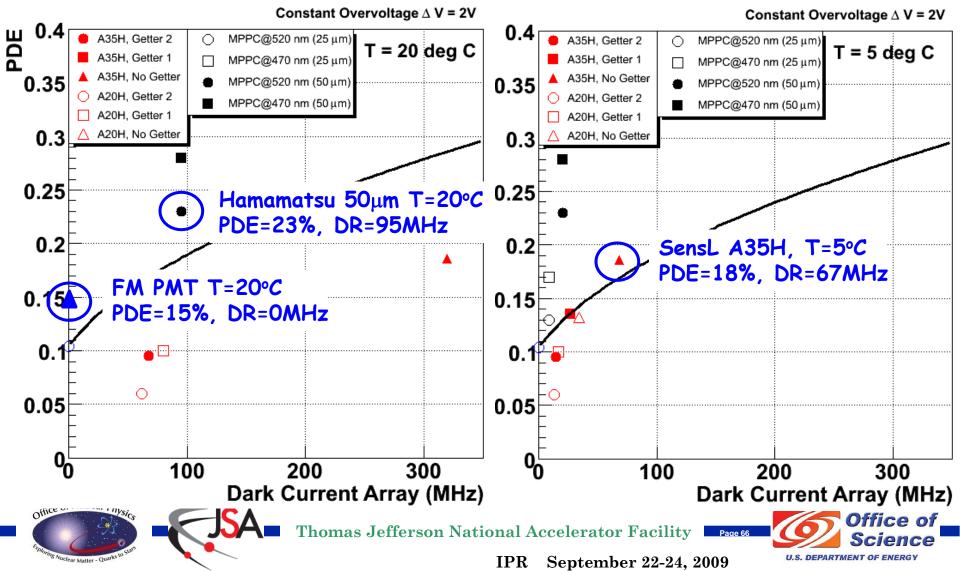
Digital Control Board

IPR September 22-24, 2009

ational Accelerator Facility

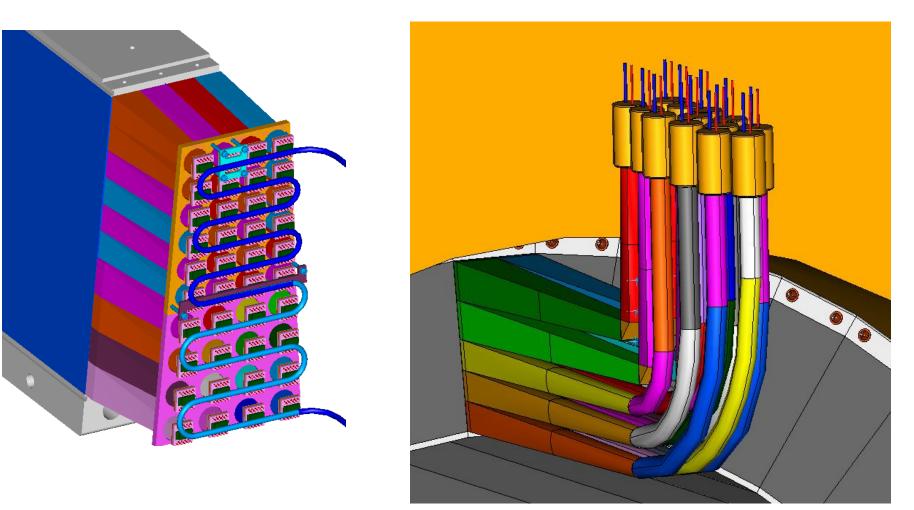
U.S. DEPARTMENT OF ENERG

BCAL SiPM options


Δ

Thomas Jefferson National Accelerator Facility

BCAL SiPM: PDE vs Dark Current


$$DR(T) = DR(20^{\circ})e^{0.103(T-20)}$$

BCAL: Two Readout Schemes

• FMPMT

• SiPM

Office of Nuclear Physics

Thomas Jefferson National Accelerator Facility

Alternative geometry might improve collection

Suggestion: Place FM PMTs at 30° relative to Field Btot < 0.2 T

Ref: Pedro Toledo GlueX-doc-1291

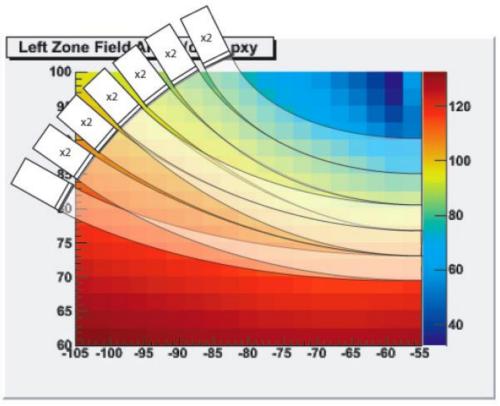
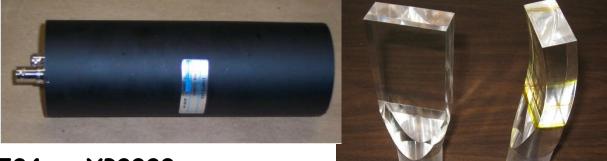
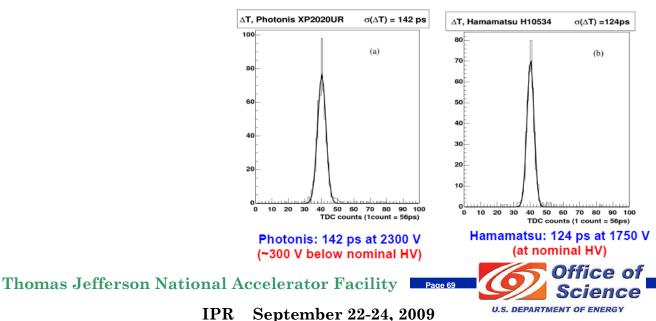


Fig. 8. FMPMT at suggested position The figure shows the 13 FMPMT deployed at the available space with the orientation needed to have 30[deg] respect to the magnetic field. The FMPMT with the label "x2" specifies that in the axis Y there will be 2 FMPMT with the same orientation

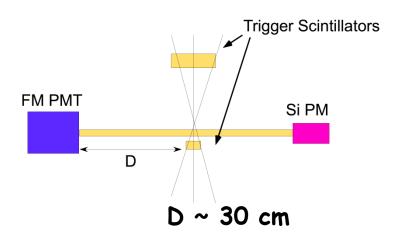


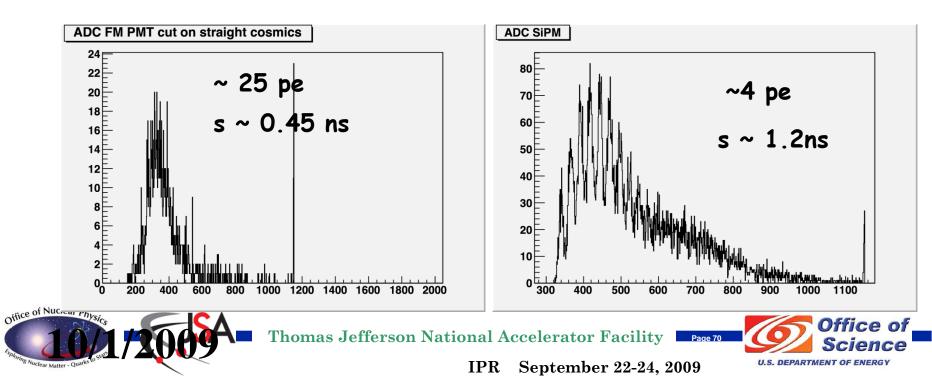
Thomas Jefferson National Accelerator Facility

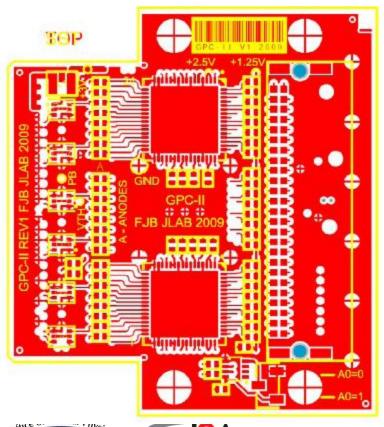


TOF Progress

- PMT: Hamamatsu H10534 vs XP2020
 - Timing resolution: slightly better
 - Lower gain: use an amplifier?
 - Lower cost
- Light guides optimization
- Timing resolution measurements: progress
- Construction: FY12


Timing resolution: XP2020UR vs H10534




Start Counter Progress

- Plastic scintillator 3x10x600 mm³
- Measured attenuation length ~240 mm
- Comparison
 - SiPM (3×3mm, SENSL) 1.2 ns
 - FM PMT 0.45 ns
 - Need 0.35ns for bunch identification
- Light guides, better SiPM, WLS fiber?
 Construction: FY12

GAS-II ASIC

GAS-II ASIC chips 8 channels/chip (prototype GAS-I - extensively tested) ~100 chips received June 2009 Preliminary tests - OK Gain settings: Cathodes: 6 mV/fC, Q <120 fC Anodes: 1.2 mV/fC, Q <600 fC Anode discriminators: 3.2 fC Bonding missing for channel #3 will be fixed for production Preamplifier PCB: 3 ASICs Finish testing by Oct 1 Package 40 chips with the bond fixed Use for the FDC testing Procurement schedule: June 2010

Thomas Jefferson National Accelerator Facility

Checkout/Commissioning

- Commissioning Period One: General Checkout (without Beam)
 - Hall D Objectives:

Test base functionalities of the detectors, magnets, and target during early phase of the Hall D installation, with testing of the superconducting magnet performed well in advance of the further detector assembly and installation.

- checkout the solenoid; cryo-system, quench test, run to full field, magnetic field measurements
- tagger checkout; power supplies, interlock systems, magnetic field measurements, run magnet at full field
- checkout individual detector components for basic functions
- tests of liquid hydrogen target interlock system
- test all electronic modules for full functionality in separate test stand prior to integration in DAQ

Checkout/Commissioning

- Commissioning Period Two: Integrated Checkout (Hot Checkout)
 - Hall D Objectives:

the purpose of the detector checkout without beam is to ensure that all detector components are functional and cabled correctly. During this period a full check of the data acquisition and slow control system is performed. A test of all the interlock system for running with beam is also performed, to ensure the safety of the equipment during beam operation.

- checkout of HV and LV systems before and after they are cabled to the detectors.
- test of slow-control and alarm system
- test of FDC and CDC with integrated pulser system; test of calorimeters and ToF with gain monitoring system
- check detector responses with pulsers and led systems and magnetic field turned on
- check all the detectors with cosmics to determine gain, ... test monitoring software and trigger logic.

Thomas Jefferson National Accelerator Facility

Checkout/Commissioning

- Commissioning Period Three: Full Commissioning (with beam)
 - Hall D Objective:

Transport an electron beam with an energy of at least 10 GeV, average current of at least 2 nA, and emittance < 20 nm-rad at tagger radiator (CD4B-VIII).

- Transport photons from the tagger radiator through a collimator to a target within the Hall D spectrometer.
- checkout of individual detector components with photon beam
- checkout the trigger logic for real events.
- checkout all slow-control and monitoring software
- write full events to tape

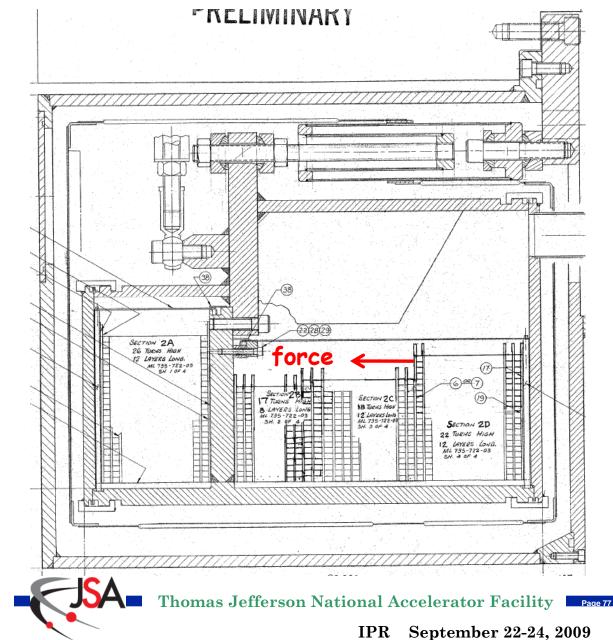
Backup

Office of Nuclear Physics **SA** Thomas Jefferson National Accelerator Facility Nuclear Matter - Quarks

September 22-24, 2009 IPR

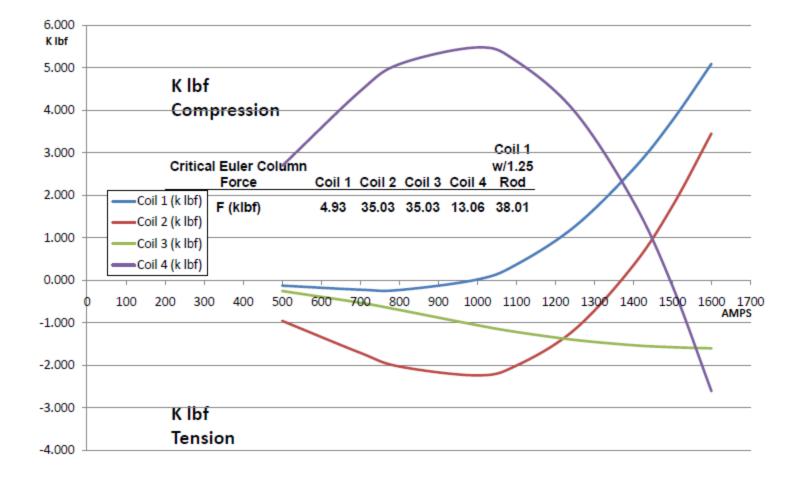
Solenoid Coil Refurbishment Status

Coil	LN2 Circuit	LHe Vol.	Coil Structure	Electrical Shorts
1	OK	OK	OK	OK Ready to close- up at JLab
2	OK	OK	Subcoil D needs structural support	OK
3	New stainless shields delivered to IUCF	OK	OK	OK
4	OK	OK	OK	OK


Office of Nuclear Physics

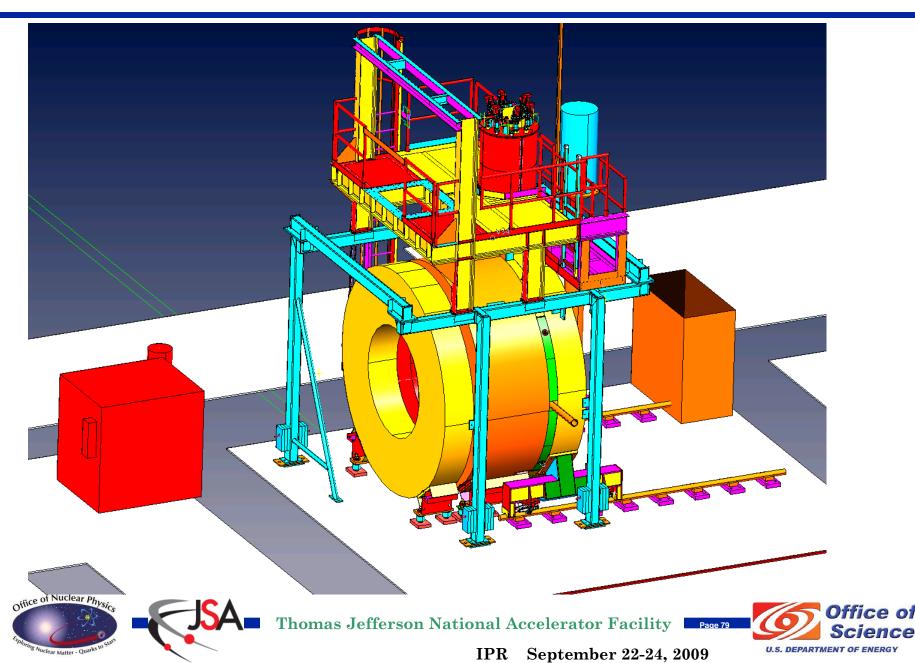
Thomas Jefferson National Accelerator Facility

Solenoid: Coil 2



Office of Nuclear Physics

Nuclear Matter - Quarks

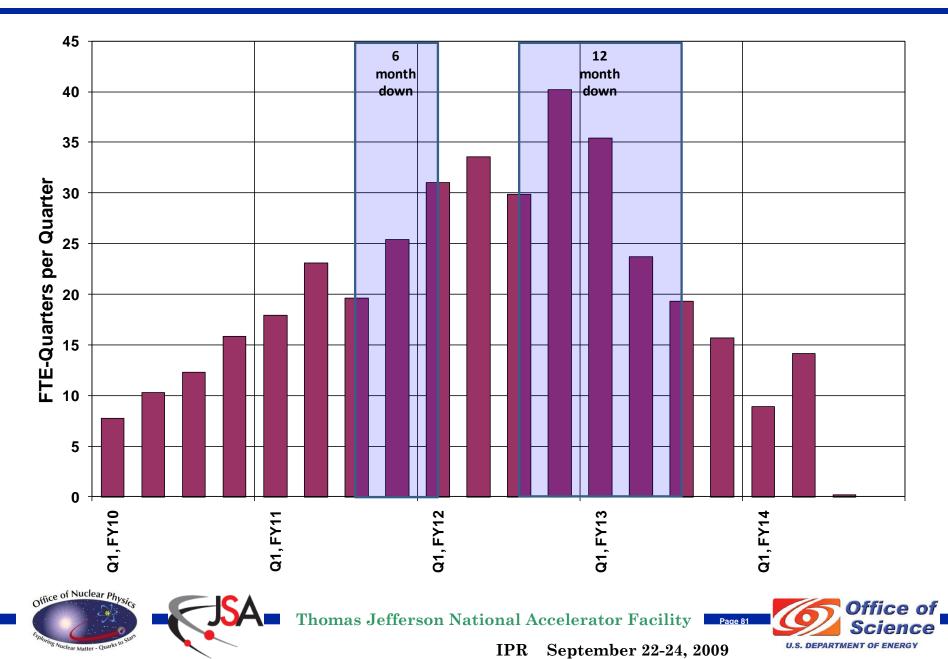


Solenoid: Axial Forces per Column

Office of Nuclear Physics IPR September 22-24, 2009

Solenoid: Planned Test of Coil 1

1.5 Cost Construction


lear Matter - Qu

Construction				
WBS	System	FY09\$k Direct		
1.5.1	Solenoid	1231		
1.5.2	Detectors	12217		
1.5.3	Computing	2954		
1.5.4	Electronics	6210		
1.5.5	Beamline	3086		
1.5.6	Infrastructure	3429		
1.5	Total	29127		

Hall D construction: 16% of total

Hall D JLab Labor Profile

Construction Schedule

<u>12 GeV Upgrade</u>	e FY 08-15 Hall D Level 4
Activity ID Name	FY2008 FY2009 FY2010 FY2011 FY2012 FY2013 FY2014 FY2015 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
1. 12 GeV UPGRADE SCHEDULE (FY08-15)	
1.1 R&D	
1.2 PED	
1.5 CONSTRUCTION HALL D	
1.5.1 SOLENOID	
1.5.2 DETECTORS	
1.5.2.1 TRACKING	
1.5.2.2 CALORIMETRY	
1.5.2.3 PARTICLE ID	
1.5.3 COMPUTING	
1.5.3.1 DAQ	
1.5.3.2 ONLINE COMPUTING	
1.5.3.3 OFFLINE COMPUTING	
1.5.4 ELECTRONICS	
1.5.4.1 FADC	
1.5.4.2 TDC	
1.5.4.3 TRIGGER	
1.5.4.4 CRATES/RACKS	
1.5.4.5 LOGIC, HV	
1.5.5 BEAMLINE	
1.5.5.1 TAGGER	
1.5.5.2 TARGET	
1.5.5.3 BEAMLINE COMPONENTS	
1.5.6 INFRASTRUCTURE	
1.5.6.1 ASSEMBLY	
1.5.6.2 INSTALLATION	
1.5.6.3 CRYOGENICS	

Thomas Jefferson National Accelerator Facility

