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Do gluonic degrees of freedom 
manifest themselves in the bound 

states we observe in nature?
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FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the m⇡ = 391MeV, 243 ⇥ 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.

extrapolation might be the complex resonance pole posi-
tion, but we do not obtain this in our simple calculations
using only “single-hadron” operators.

We discuss the specific case of the 0�+ and 1�� sys-
tems in the next subsections.

E. The low-lying pseudoscalars: ⇡, ⌘, ⌘0

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the ⇡ and ⌘ mesons are exactly stable and ⌘

0

is rendered stable since its isospin conserving ⌘⇡⇡ decay
mode is kinematically closed. Because of this, many of
the caveats presented in Section III B do not apply. Fig-
ure 17 shows the quality of the principal correlators from
which we extract the meson masses, in the form of an
e↵ective mass,

me↵ =
1

�t
log

�(t)

�(t+ �t)
, (16)

for the lightest quark mass and largest volume consid-
ered. The e↵ective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.

Figure 18 indicates the detailed quark mass and vol-
ume dependence of the ⌘ and ⌘

0 mesons. We have already
commented on the unexplained sensitivity of the ⌘0 mass

to the spatial volume atm⇡ = 391MeV, and we note that
since only a 163 volume was used at m⇡ = 524MeV, the
mass shown there may be an underestimate.
Figure 19 shows the octet-singlet basis mixing angle,

✓ = ↵ � 54.74�, which by definition must be zero at the
SU(3)F point4 . While we have no particularly well mo-
tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value ⇠ �10� [1, 45–47].

F. The low-lying vector mesons: ⇢,!,�

Figure 20 shows the e↵ective masses of !,� and ⇢ prin-
cipal correlators on the m⇡ = 391MeV, 243⇥128 lattice.
The splitting between the ⇢ and ! is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the ! and � mesons are kine-
matically stable against decay into their lowest thresh-
old channels, ⇡⇡⇡ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4
Here we are using a convention where |⌘i = cos ✓|8i � sin ✓|1i,
|⌘0i = sin ✓|8i+cos ✓|1i with 8,1 having the sign conventions in

Eqn 5.

M
es

on
 M

as
s (

M
eV

)

11

FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the m⇡ = 391MeV, 243 ⇥ 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.
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Jefferson Lab   12 GeV Upgrade

Completed upgrade of maximum 
electron beam energy from 6 to 12 GeV


Simultaneously delivered beam to all 4 
halls in Spring 2018!
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Linearly polarized photon beam 
from CEBAF 12 GeV


Large acceptance detector for 
both charged and neutral particles


~200 billion events (3 PB of data) 
collected in 2017 and 2018
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Non-exotic JPC in photoproduction
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FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the m⇡ = 391MeV, 243 ⇥ 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.

extrapolation might be the complex resonance pole posi-
tion, but we do not obtain this in our simple calculations
using only “single-hadron” operators.

We discuss the specific case of the 0�+ and 1�� sys-
tems in the next subsections.

E. The low-lying pseudoscalars: ⇡, ⌘, ⌘0

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the ⇡ and ⌘ mesons are exactly stable and ⌘

0

is rendered stable since its isospin conserving ⌘⇡⇡ decay
mode is kinematically closed. Because of this, many of
the caveats presented in Section III B do not apply. Fig-
ure 17 shows the quality of the principal correlators from
which we extract the meson masses, in the form of an
e↵ective mass,

me↵ =
1

�t
log

�(t)

�(t+ �t)
, (16)

for the lightest quark mass and largest volume consid-
ered. The e↵ective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.

Figure 18 indicates the detailed quark mass and vol-
ume dependence of the ⌘ and ⌘

0 mesons. We have already
commented on the unexplained sensitivity of the ⌘0 mass

to the spatial volume atm⇡ = 391MeV, and we note that
since only a 163 volume was used at m⇡ = 524MeV, the
mass shown there may be an underestimate.
Figure 19 shows the octet-singlet basis mixing angle,

✓ = ↵ � 54.74�, which by definition must be zero at the
SU(3)F point4 . While we have no particularly well mo-
tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value ⇠ �10� [1, 45–47].

F. The low-lying vector mesons: ⇢,!,�

Figure 20 shows the e↵ective masses of !,� and ⇢ prin-
cipal correlators on the m⇡ = 391MeV, 243⇥128 lattice.
The splitting between the ⇢ and ! is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the ! and � mesons are kine-
matically stable against decay into their lowest thresh-
old channels, ⇡⇡⇡ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4
Here we are using a convention where |⌘i = cos ✓|8i � sin ✓|1i,
|⌘0i = sin ✓|8i+cos ✓|1i with 8,1 having the sign conventions in

Eqn 5.

M
es

on
 M

as
s (

M
eV

)



CIPANP 2018 Justin Stevens, �20

Early                   physics: ɣp→π0p

1�� : !, ⇢

1+� : b, h

Exchange JPC

t



CIPANP 2018 Justin Stevens, �21

Early                   physics: ɣp→π0p
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ɣp→π0p beam asymmetry Σ

Beam asymmetry Σ provides 
insight into dominant 
production mechanism


From experimental 
standpoint it’s easily 
extended to ɣp→ηp


No previous 
measurements! 
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π0 and η beam asymmetries
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Y? � FRYk

Y? + FRYk
= P�⌃ cos 2�p

proton
φ 

-3 -2 -1 0 1 2 3

 C
ou

nt
s

0

100

200

300

400

500

600

Polarization  

(a)

proton
φ 

-3 -2 -1 0 1 2 3

 C
ou

nt
s

0

100

200

300

400

500

||  Polarization

(b)

proton
φ 

-3 -2 -1 0 1 2 3

 Y
ie

ld
 A

sy
m

m
et

ry
 

-0.4

-0.2

0

0.2

0.4

0.6

||YR  + FY
||YR  - FY (c)

proton
φ 

-3 -2 -1 0 1 2 3

 C
ou

nt
s

0

100

200

300

400

500

600

Polarization  

(a)

proton
φ 

-3 -2 -1 0 1 2 3

 C
ou

nt
s

0

100

200

300

400

500

||  Polarization

(b)

proton
φ 

-3 -2 -1 0 1 2 3

 Y
ie

ld
 A

sy
m

m
et

ry
 

-0.4

-0.2

0

0.2

0.4

0.6

||YR  + FY
||YR  - FY (c)

Phys. Rev. C 95, 042201(R)



CIPANP 2018 Justin Stevens,

2)c (GeV/-t 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Σ  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

<9.0 GeVγGlueX 8.4<E
=10 GeVγESLAC 

0πp → pγ(a)
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ηp → pγ(b)

Testing models for t-channel 
production at high energies


No dip in t-dependence 
observed at 0.5 (GeV/c)2


Vector exchange mechanism 
dominant at these energies, 
expect similar mechanism for 
exotics

�26

π0 and η beam asymmetries

First JLab 12 GeV publication!  
Phys. Rev. C 95, 042201(R)
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Pseudoscalar beam asymmetries
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Charged pseudoscalars: more complicated -t dependence

t

⇡�

�++

⇡, ⇢, a2, ...
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Early spectroscopy opportunities
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ρ’?

SLAC:                          

PRL 53, 751 (1984)

E� = 20 GeV

�p ! ⇡+⇡�p

Enhancement consistent with earlier SLAC measurement, 
but ~1000x more statistics with early GlueX data


Polarization observables will provide further insight into 
the nature of this enhancement
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Previous photoproduction 
data very sparse for channels 
with multiple neutrals particles


Early opportunity in ηπ/η’π 
since P-wave is exotic

�29

Early spectroscopy opportunities
�p ! 4�p

⇡�p ! ⌘⇡0n

PLB 657 (2007) 27

 

�p ! ⌘⇡0pa0 a2

a0

a2 E852

A. Austregesilo: Friday, QCDHS @ 16:10 
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exoticspositive paritynegative parity

JPC

Mapping the meson spectrum

Already studying polarization observables for “simple” final states  

Beginning to identify known mesons in multi-particle final states
�30

ρ’?

b1(1235)

a2(1320)

f2(1270)

PRD 88 (2013) 094505
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J/ψ photoproduction at JLab

Threshold J/ψ provides 
information on the gluon 
distributions in the nucleon


Planned measurements in 
Hall A, B and C


First data from Hall D 
already under analysis

�31
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⇤b ! J/ pK�

Pentaquark photoproduction at JLab
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5-quark 
bound state

Hadronic 
molecule

PRL 115, 072001 (2015)
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Observation of charm at 
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�p ! pe+e�
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J/ψ photoproduction at

�34

�p ! pe+e� LHCb

Pentaquark
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                future

Lattice predicts strange and 
light quark content for mesons


Search for a pattern of hybrid 
states in many final states


Requires clean identification of 
charged pions and kaons
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FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the m⇡ = 391MeV, 243 ⇥ 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.

extrapolation might be the complex resonance pole posi-
tion, but we do not obtain this in our simple calculations
using only “single-hadron” operators.

We discuss the specific case of the 0�+ and 1�� sys-
tems in the next subsections.

E. The low-lying pseudoscalars: ⇡, ⌘, ⌘0

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the ⇡ and ⌘ mesons are exactly stable and ⌘

0

is rendered stable since its isospin conserving ⌘⇡⇡ decay
mode is kinematically closed. Because of this, many of
the caveats presented in Section III B do not apply. Fig-
ure 17 shows the quality of the principal correlators from
which we extract the meson masses, in the form of an
e↵ective mass,

me↵ =
1

�t
log

�(t)

�(t+ �t)
, (16)

for the lightest quark mass and largest volume consid-
ered. The e↵ective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.

Figure 18 indicates the detailed quark mass and vol-
ume dependence of the ⌘ and ⌘

0 mesons. We have already
commented on the unexplained sensitivity of the ⌘0 mass

to the spatial volume atm⇡ = 391MeV, and we note that
since only a 163 volume was used at m⇡ = 524MeV, the
mass shown there may be an underestimate.
Figure 19 shows the octet-singlet basis mixing angle,

✓ = ↵ � 54.74�, which by definition must be zero at the
SU(3)F point4 . While we have no particularly well mo-
tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value ⇠ �10� [1, 45–47].

F. The low-lying vector mesons: ⇢,!,�

Figure 20 shows the e↵ective masses of !,� and ⇢ prin-
cipal correlators on the m⇡ = 391MeV, 243⇥128 lattice.
The splitting between the ⇢ and ! is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the ! and � mesons are kine-
matically stable against decay into their lowest thresh-
old channels, ⇡⇡⇡ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4
Here we are using a convention where |⌘i = cos ✓|8i � sin ✓|1i,
|⌘0i = sin ✓|8i+cos ✓|1i with 8,1 having the sign conventions in

Eqn 5.
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states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.
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bution at large times in this channel. At the pion masses
presented in this paper, the ! and � mesons are kine-
matically stable against decay into their lowest thresh-
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                DIRC upgrade

barrel
calorimeter

time-of
-flight

forward calorimeter 

photon beam

electron
beamelectron

beam

superconducting
magnet 

target

tagger magnet

tagger to detector distance
is not to scale

diamond
wafer

GlueX

central drift
chamber

forward drift
chambers

start
counter

DIRC

The GlueX DIRC (Detection of Internally Reflected Cherenkov light) 
provides new K/π separation and will use components of the BaBar DIRC 


Partial installation and commissioning in 2018

Cherenkov Photon “Ring” 
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                DIRC upgrade

@GlueX_DIRCFollow our trip:

Final shipment from SLAC to JLab this week!

https://twitter.com/GlueX_DIRC
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Summary

The                experiment is 
commissioned and the initial 
meson program is well 
underway


Early measurements aimed at 
understanding the meson 
production mechanism through 
polarization observables


First observation of charm at  
Jefferson Lab, potential limits 
on pentaquark production
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Supported by DE-SC0018224
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