
ATLAS Quality Assurance Group
ATLAS C++ Coding Standard

Specification

Version: 1.2
Issue: 1
Status: FINAL
ID: ATL-SOFT-2002-001
Date: 2003-07-11

European Laboratory for Particle Physics
Laboratoire Européen pour la Physique des Particules
CH-1211 Genève 23 - Suisse

ATLAS C++ Coding Standard Specification
2003-07-11 Version/Issue: 1.2/1
page ii FINAL

ATLAS C++ Coding Standard Specification
Abstract Version/Issue: 1.2/1
Abstract

This document defines the ATLAS C++ coding standard, that should be adhered to when
writing C++ code.

It has been adapted from the original “PST Coding Standard” document
(http://pst.cern.ch/HandBookWorkBook/Handbook/Programming/programming.html)
CERN-UCO/1999/207.

The “ATLAS standard” comprises modifications, further justification and examples for some
of the rules in the original PST document. All changes were discussed in the ATLAS Offline
Software Quality Assurance Group (formerly known as the Quality Control Group) and
feedback from the collaboration is taken into account in the final version.

Document Control Sheet

Document Title: ATLAS C++ Coding Standard Specification

Version: 1.2 ID: ATL-SOFT-2002-001

Issue: 1 Status: FINAL

 Created: 2000-01-05

Date: 2003-06-16

Available at: http://documents.cern.ch/

Keywords: ATLAS coding standard, C++

Tool Name: Adobe FrameMaker Version: 6.0p405

Template: Software Doc Layout Templates Version: Vb1 - 16
November 1998

Authorship Written by: The former Spider group and ATLAS QC group

Contributors: M. Asai, D. Barberis, M. Bosman, B. Jones, J-F. Laporte,
M. Stavrianakou, C. Arnault, D. Candlin, R. Candlin, S.M. Fisher,
E. Frank, T. Hansl-Kozanecka, D. Malon, S. Qian, D. Quarrie,
RD Schaffer, P. Calafiura, M. Marino.

Coordinator S. Albrand (from 2001-09-01)

Reviewed by:

Approved by:
FINAL page iii

ATLAS C++ Coding Standard Specification Document
Document Status Sheet Version/Issue: 1.2/1
Document Status Sheet

Title: ATLAS C++ Coding Standard Specification

ID: ATL-SOFT-2002-001

Version Issue Date Reason for change

0.1 0 2000-08-01 Release to QC group for review

0.2 0 2000-12-10 Release to a broader QC group for review

0.2 1 2001-01-19 Release to a broader QC group for review

1.0 0 2001-01-30 Release to public

1.1 0 2002-01-06 Release to original document authors

1.1 1 2002-03-05 Release to ATLAS developers

1.1 2 2002-03-27 Release to public

1.2 0 2003-06-16 Release to Atlas A-team and Atlas-SIT

1.2 1 2003-07-11 Release to ATLAS developers
page iv FINAL

ATLAS C++ Coding Standard Specification
Document Change Record Version/Issue: 1.2/1
Document Change Record

Title: ATLAS C++ Coding Standard Specification

ID: ATL-SOFT-2002-001

Version: 1.2

Date: 2003_06_16

Page Paragraph Reason for Change

all pages Added label to rules which are checked by the rulechecker
2.0

page 2 1.3.1 Added this section

page 4 1.5 Added reference to Design Patterns, and Effective STL

page 8 NC1, NC2, NC6 Made clearer that rule NC6 applies to NC1 and NC2

page 13 CO2 Added reference to detailed explanation

page 14 CO5 New rule on the ordering of include files.

page 16 CL2 Some very common constants can be literal

page 18 CL5 Minor corrections to bring the text into line with the exam-
ple.

page 22 CL11 Dropped this rule, because it is a question of design rather
than code.

page 25 CI7 Wording changed to allow singleton pattern exception,
and mention the case of iterators.

page 26 CI8 Wording changed to allow superclass exception. (so that
Gaudi algorithms do not trigger rule violations)

page 31 CH1 Explanation expanded

page 38 CR3 Tightened rule on typedefs

page 40 CP10 Indexes for loops are excluded from the check

page 42 CT3 Testing templates

page 44 SG7 C++ keywords are exceptions to the rule.

page 45 SC1 Changed to be consistent with Doxygen use
FINAL page v

ATLAS C++ Coding Standard Specification Document
Document Change Record Version/Issue: 1.2/1
page vi FINAL

ATLAS C++ Coding Standard Specification
Table of Contents Version/Issue: 1.2/1
Table of Contents

Abstract . iii

Document Control Sheet . iii

Document Status Sheet . iv

Document Change Record . .v

Table of Contents . vii

1 Introduction . 1

1.1 Purpose . 1
1.2 Authors . 1
1.3 Evolution and updating responsibility 1

1.3.1 Motivations for the evolution of the document 2
1.4 Organization of this document and approach 2

1.4.1 Naming . 2
1.4.2 Coding . 2
1.4.3 Style . 3
1.4.4 Item Numbering . . 3
1.4.5 Item Information . . 4

1.5 References . 4
1.6 Definitions and Acronyms . 4

2 Naming . 7

2.1 Naming of files (NF) . . 7
2.2 Meaningful Names (NM) . . 7
2.3 Illegal or Non-recommended Naming (NI) 8
2.4 Naming Conventions (NC) . 8

3 Coding . 13

3.1 Organizing the Code (CO) . 13
3.2 Control Flow (CF) . 14
3.3 Object Life Cycle (CL) . 16

3.3.1 Initialization of Variables and Constants 16
3.3.2 Constructor Initializer Lists 17
3.3.3 Copying of Objects . 19

3.4 Conversions (CC) . 22
3.5 The Class Interface (CI) . 24

3.5.1 Inline Functions . 24
3.5.2 Argument Passing and Return Values 25
3.5.3 const Correctness . 26

3.5.4 Overloading and Default Arguments 27
FINAL page vii

ATLAS C++ Coding Standard Specification Document
Table of Contents Version/Issue: 1.2/1
3.6 new and delete (CN) . 27
3.7 Static and Global Objects (CS) 28
3.8 Object-Oriented Programming (CB) 30
3.9 Assertions and error conditions (CE) 31
3.10 Error Handling (CH) . 32
3.11 Parts of C++ to Avoid (CA) . 36
3.12 Readability and maintainability (CR) 40
3.13 Portability (CP) . 41
3.14 C++ Templates (CT) . 44

4 Style . 47

4.1 General aspects of style (SG) . 47
4.2 Comments (SC) . 49

A Terminology . 51

B List of the items of the standard . 55
page viii FINAL

ATLAS C++ Coding Standard Specification
1 Introduction Version/Issue: 1.2/1
1 Introduction

1.1 Purpose

The purpose of this document is to define a C++ coding standard that ATLAS offline software
developers should adhere to. The standard provides indications aimed at helping C++
programmers to meet the following requirements on a program:

• be free of common types of errors

• be maintainable by different programmers

• be portable to other operating systems

• be easy to read and understand

• have a consistent style

Questions of design are beyond the scope of this document. It is also assumed that the code is
hand-written and not generated; otherwise a different standard would be needed for the
input to the code generator.

Disclaimer: This document does not substitute in any way the study of a book on C++
programming.

1.2 Authors

This document has been adapted from the original “PST Coding Standard” document
(http://pst.cern.ch/HandBookWorkBook/Handbook/Programming/programming.html).

The “ATLAS standard” comprises modifications, further justification and examples for some
of the rules in the original PST document. All changes were discussed in the ATLAS Offline
Software Quality Control Group and feedback from the collaboration was taken into account
in the “final” version.

The original “PST Coding Standard” document originated in the context of the SPIDER
project, where representatives from different experiments (ALICE, ATLAS, LHCb, CMS and
COMPASS) led by the IT/IPT group established and propose a common standard across
experiments/projects.

1.3 Evolution and updating responsibility

Changes to this standard will be implemented when necessary, following a procedure
established by the ATLAS Offline Software Quality Assurance Group, formerly known as the
FINAL page 1

ATLAS C++ Coding Standard Specification Document
1 Introduction Version/Issue: 1.2/1
ATLAS Offline Software Quality Control Group, which is responsible for the maintenance of
the document.

1.3.1 Motivations for the evolution of the document

The tool “rulechecker”1 has been in use for Atlas code since December 2002. Also human
review of Atlas code has started and is expected to increase.

Experience with applying the Atlas coding rules both with tools and by reviewers has lead us
to rewrite several rules to make them clearer. In several cases the wording of the rule was not
sufficiently unambiguous for the implementation of an automatic check.

Rules checked by rulechecker are marked with “RC” in the left hand margin.

1.4 Organization of this document and approach

This document is organized as follows:

• Chapter 1: Introduction - this chapter

• Chapter 2: Naming - list of all items on naming, with explanation and examples

• Chapter 3: Coding - list of all items on coding, with explanation and examples

• Chapter 4: Style - list of all items on style, with explanation and examples

• Appendix A: Terminology

• Appendix B: List of the items in the standard

1.4.1 Naming

This section contains indications on how to choose names for all entities over which the
programmer has control, e.g. classes, typedefs, functions, variables, namespaces, files.

1.4.2 Coding

Indications in this section regard the syntax and related semantic of the code. Organization of
code, control flow, object life cycle, conversions, object-oriented programming, error handling,
parts of C++ to avoid, portability, are all examples of issues that are covered here. This section
is organized in different paragraphs, each one grouping items addressing the same subject.

1. The tool is produced by the Istituto Trentino di Cultura, Trento, Italy http://www.itc.it/
page 2 FINAL

ATLAS C++ Coding Standard Specification
1 Introduction Version/Issue: 1.2/1
1.4.3 Style

Code is always written in a particular style. This section contains indications aimed at
defining one, that should allow a common and consistent look and feel of the code. Style
relates to matters which do not affect the output of the compiler.

1.4.4 Item Numbering

Each item comprises at least two entities, an identifier and an item title. The identifier is
formed by two letters and a number (e.g. NF3); the first letter (N, C or S) indicates to which
section (Naming, Coding or Style) the item belongs, the second letter indicates the subsection,
while the number represents the order within the subsection. This kind of identification
should allow a minimal impact on the item numbering during the maintenance of the
standard, that is in the cases where items are added or removed.

Table 1 List of Item Identifiers

Identifier Type of rule

NF File naming

NM General naming

NI Illegal naming

NC Naming conventions

CO Code organization

CF Control flow

CL Object life cycle

CC Conversions

CI Class interface

CN new and delete

CS Static and global objects

CB Object oriented programming

CE Assertions and errors

CH Error handling

CA Parts of C++ to avoid

CR Readability and maintenance
FINAL page 3

ATLAS C++ Coding Standard Specification Document
1 Introduction Version/Issue: 1.2/1
1.4.5 Item Information

Whenever possible and appropriate, a statement and an example have been added to the
individual item; the statement is an explanation that expands the item and clarifies its
meaning and scope.

Items have been marked with the attribute REQUIRED or RECOMMENDED. This is an
attempt to indicate to developers and to reviewers, what their attitude should be to each item
of the standard. An item marked “recommended” is not to be considered as obligatory. It is
used to mark an item which is “desirable”, or “should be avoided”, for example, in the
interests of a coherent style or of readability. An item which is marked as “required” is
something that all developers MUST try to follow. This does not mean that a reviewer should
never allow an exception, indeed possible exceptions are sometimes mentioned in the text,
but that if a developer wishes to “transgress” one of these items, he or she must be prepared to
justify to the reviewer, and to copiously comment within the code, that there was no other
way both possible and acceptable, to obtain the desired result.

1.5 References

1 C++ Coding Standard - Specification, S. Paoli, P. Binko, D. Burckhart, S.M. Fisher,
I. Hrivnacova, M. Lamanna, M. Stavrianakou, H.-P. Wellisch CERN-UCO/1999/207,
20 October 1999.

2 Standard for the Programming Language C++, ISO/IEC 14882.

3 Effective C++, 2nd Edition, S. Meyers, Addison-Wesley.

4 Design Patterns, Elements of Reusable Object-Oriented Software, Erich Gamma,
Richard Helm, Ralph Johnson, John Vlissides, Addison-Wesley.

5 Effective STL, 2nd Edition, S. Meyers, Addison-Wesley 2001 ISBN 0-201-74962-9

1.6 Definitions and Acronyms

SPIDER Software Process Improvement for Documentation, Engineering, and Reuse of
LHC and HEP Software Systems, Applications and Components

CP Portability

CT Templates

SG General style

SC Comments

Table 1 List of Item Identifiers

Identifier Type of rule
page 4 FINAL

ATLAS C++ Coding Standard Specification
1 Introduction Version/Issue: 1.2/1
Item Single statement addressing a specific issue (other terms typically used for that
are: rule, guideline, convention, recommendation). In this document items are
either REQUIRED or RECOMMENDED.

Standard Collection of items addressing the same subject (in this case coding of C++
software)
FINAL page 5

ATLAS C++ Coding Standard Specification Document
1 Introduction Version/Issue: 1.2/1
page 6 FINAL

ATLAS C++ Coding Standard Specification
2 Naming Version/Issue: 1.2/1
2 Naming

This section contains a set of conventions on how to choose, write and administer names for
all entities over which the programmer has control.

2.1 Naming of files (NF)

RC

NF1 The name of the header file must be the same as the name of the class it defines, with a suffix
".h" appended. (REQUIRED)

In the presence of name space, the file name should not include the name space prefix (e.g. for
a class Emc::Track, the name of its header file should be Track.h).

RC

NF2 The name of the implementation file must be the same as the name of the class it implements,
with a suffix “.cxx” appended. (REQUIRED)

2.2 Meaningful Names (NM)

NM1 Use pronounceable English words or acronyms widely used in the experiment to compose all
lexical entities except for local loop variables and array indices. (RECOMMENDED)

They aid discussion, and are helpful for newcomers.

Use names that are English and self-descriptive. If abbreviations and/or acronyms cannot be
avoided, then they are better to be agreed upon by the communities concerned and be
meaningful, uniform and documented.

This is very important for everyone to understand the meaning of the declared entities and to
make the code easy to be read and used.

Example:

The header file for the class CalorimeterCluster would have the name CalorimeterCluster.h

Example:

The implementation file for the class CalorimeterCluster would have the name
CalorimeterCluster.cxx

Example:

Use nameLength instead of nLn.
FINAL page 7

ATLAS C++ Coding Standard Specification Document
2 Naming Version/Issue: 1.2/1
2.3 Illegal or Non-recommended Naming (NI)

RC

NI1 Do not create very similar names. (RECOMMENDED)

Very similar names might cause confusion in reading the code.

In particular do not create names that differ only by case.

RC

NI2 Do not use identifiers that begin with an underscore. (REQUIRED)

Names starting with an underscore are used in C and C++ compiler implementation. To allow
users to use such names introduces a needless confusion.

2.4 Naming Conventions (NC)

RC

NC1 Use prefix “m_” for private attributes (i.e. data members) in each class. (REQUIRED)

Start names of variables and functions with a lowercase letter after the prefix “m_”

RC

NC2 Use prefix “s_” for private static attributes (i.e. class data members). (RECOMMENDED)

Start names of variables and functions with a lowercase letter after the prefix “s_”

NC3 The choice of prefixes for package names and the choice of name for namespaces should be
agreed upon by the communities concerned and should, where appropriate, correspond to the
Product Breakdown Structure (PBS). (RECOMMENDED)

NC4 Use namespace to avoid name conflicts between classes. (REQUIRED).

A name clash occurs when a name is defined in more than one place. For example, two
different class libraries could give two different classes the same name. If you try to use many
class libraries at the same time, there is a fair chance that you will be unable to compile and
link the program because of name clashes. To solve the problem you can use a namespace.

Example:

track, Track, TRACK
cmlower, cslower
page 8 FINAL

ATLAS C++ Coding Standard Specification
2 Naming Version/Issue: 1.2/1
Example of the declaration of a namespace:

A namespace is a declarative region in which classes, functions, types and templates can be
defined. A namespace should be defined at the package level to put in common what is
necessary for classes of the package, and to render these common elements accessible for
client packages. Thus a good name for the namespace is the name of the package to which it
belongs. (see rule NC3)

A name qualified with a namespace name refers to a member of the namespace.

A using declaration makes it possible to use a name from a namespace without the scope
operator.

Recommendations for the use of namespaces based on proposals by L. Tuura

Using directives (e.g. ‘using namespace std;’) can be used only in function scope or to
import names from one named namespace to another named namespace.

Examples of allowed usage:

“using” directives are forbidden everywhere else.

namespace Emc {
class Track { ... };
// ...

}

Emc::Track electronTrack;

using Emc::Track; // using declaration
Track electronTrack;

void MyClass::MyMethod()
{
using clhep::units::mm; // function scope
// do something
}
namespace foo { using bar::foobar; // import to named namespace }
FINAL page 9

ATLAS C++ Coding Standard Specification Document
2 Naming Version/Issue: 1.2/1
Examples of forbidden usage:

Note: “using” declarations cannot be used in classes, where they have a completely different
interpretation anyway (for example to access from a derived class a same name member of a
base class or to restore public accessibility of a base class method when private inheritance is
used -- for further details see References [1] and [2]).

Whatever the conventions adopted (depending on project policies and practices), it is
essential that the style be consistent and documented (especially if it does not follow the
“official” rules).

RC

NC5 Start class names, typedefs and enum types with an uppercase letter. (REQUIRED)

RC

NC6 Start names of variables and functions with a lowercase letter. (REQUIRED)

In the cases of NC1 and NC2 (i.e. for the private attributes), start names of variables and
functions with a lowercase letter after the prefix (“s_” or “m_”).

RC

NC7 In names that consist of more than one word, write the words together, and start each word that
follows the first one with an upper case letter. (RECOMMENDED)

This is a change from the previous Atlas coding rules which recommended a different
convention (i.e. using the underscore between words). This new rule is based on the STL style.
Existing code may not need to be changed; however, when a package has a serious overhaul,
you should switch to this new rule. Clearly, when using other classes (including STL) one has
to accept the name of the classes and methods which are provided. More suggestions are

using std::operator!=; // at file scope
namespace { using foo::bar; // import to anonymous namespace }

Example:

class Track;
typedef vector<MCParticleKinematics*> TrackVector;
enum State { green, yellow, red };

Example:

double energy;
void extrapolate();

Example:

class OuterTrackerDigit;
double depositedEnergy;
void findTrack();
page 10 FINAL

ATLAS C++ Coding Standard Specification
2 Naming Version/Issue: 1.2/1
(1) a class should (apart from STL) be written entirely in one convention or another;

(2) where classes in existing packages are mostly written with the old convention, new classes
added to these packages should also use underscores;

(3) where an existing package contains a mixture, the package responsible should decide
whether it is worth converting or whether to live with the mixture.

NC8 All package names in the release must be unique, independent of the package’s location in the
hierarchy. (REQUIRED).

Here a “package” is a collection of codes which are related to each other.

Thus, if there is a package, say “offline/A/B/C”, already existing, another package may not
have the name “offline/D/E/C” because that “C” has already been used. This rule maintains
our ability to flatten the structure in the future, if needed.

NC9 Underscores should be avoided in package names. (RECOMMENDED)

The old Atlas rule was that the “_” should be used in package names when they are
composites of one or more acronyms, e.g. TRT_Tracker, AtlasDB_*.

Underscores should be avoided unless they really help with readability and help in avoiding
spelling mistakes. TRTTracker looks odd because of the double ”T”. Using underscores in
package names will also add to confusion in the multiple-inclusion protection lines (see rule
CO1)

FINAL page 11

ATLAS C++ Coding Standard Specification Document
2 Naming Version/Issue: 1.2/1
page 12 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
3 Coding

This section contains a set of items regarding the “content” of the code. Organization of the
code, control flow, object life cycle, conversions, object-oriented programming, error handling,
parts of C++ to avoid, portability, are all examples of issues that are covered here.

The purpose of the following items is to highlight some useful ways to exploit the features of
the programming language, and to identify some common or potential errors to avoid.

3.1 Organizing the Code (CO)

RC

CO1 Header files must begin and end with multiple-inclusion protection. (REQUIRED)

The actual value for the IDENTIFIER is the class name converted to upper case proceeded by
the package name.

The current scheme in ATLAS is package name + “_” + class name (where the names are in
upper case and for composite names “_” are inserted as separators e.g. FooBar => FOO_BAR).

Header files are often included many times in a program. Because C++ does not allow
multiple definitions of a class, it is necessary to prevent the compiler from reading the
definitions more than once.

RC

CO2 Use forward declaration instead of including a header file, if this is sufficient. (RECOMMENDED)

Here it is sufficient to say that Line is a class, without giving details which are inside its header.
This saves time in compilation and avoids an apparent dependency upon the Line header file.

A detailed explanation of how the rulechecker tool implements the checking of this rule can
be found at

http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/Development/qa/Tools/CO2.html

Example of implementation:

#ifndef IDENTIFIER_H
#define IDENTIFIER_H
// The text of the header goes in here ...
#endif // IDENTIFIER_H

Example:

class Line;
class Point {

public:
Number distance(const Line& line) const; // Distance from a line

};
FINAL page 13

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
RC

CO3 Each header file must contain one class (or embedded or very tightly coupled classes)
declaration only. (REQUIRED)

This makes your source code files easier to read. This also improves the version control of the
files; for example the file containing a stable class declaration can be committed and not
changed any more.

RC

CO4 Implementation files must hold the member function definitions for a single class (or embedded
or very tightly coupled classes) as defined in the corresponding header file. (REQUIRED)

This is for the same reason as for item CO3.

CO5 Ordering of #include statements. (RECOMMENDED)

For ease of reading and to provide for a visual taxonomy of dependencies favor a grouping
style of #include statements into three categories, in both the declaration and definition units
for a class. The three categories are system, extra-package and intra-package dependencies.
Note that this does not address the issue of reducing dependencies which should always be
the first priority.

3.2 Control Flow (CF)

CF1 Do not change a loop variable inside a for loop block. (REQUIRED)

When you write a for loop, it is highly confusing and error-prone to change the loop variable
within the loop body rather than inside the expression executed after each iteration.

CF2 All switch statements must have a default clause. (REQUIRED)

In some cases the default clause can never be reached because there are case labels for all
possible enum values in the switch statement, but by having such an unreachable default
clause you show a potential reader that you know what you are doing.

You also provide for future changes. If an additional enum value is added, the switch
statement should not just silently ignore the new value. Instead, it should in some way notify
the programmer that the switch statement must be changed; for example, you could throw
an exception
page 14 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
CF3 Each clause of a switch statement must end with “break”. (REQUIRED)

CF4 An “if statement” which does not fit in one line must have brackets around the conditional
statement. (REQUIRED)

This makes code much more readable and reliable, by clearly showing the flow paths.

The addition of a final else is particularly important in the case where you have
if/else-if. To be safe, even single statements should be explicitly blocked by {}.

RC

CF5 Do not use goto. (REQUIRED)

Use break or continue instead.

This statement remains valid also in the case of nested loops, where the use of control
variables can easily allow to break the loop, without using goto.

goto instructions decrease readability and maintainability and make testing difficult by
increasing the complexity of the code.

goto instructions may also affect the optimisation by the compiler (loop-unrolling) and this
sometimes results in severe performance penalties.

Example:

CF2, CF3 joint example

// somewhere specified: enum Colors { GREEN, RED }

// semaphore of type Colors

switch(semaphore) {
case GREEN:

// statement
break;

case RED:
// statement
break;

default:
// unforseen color; it is a bug
// do some action to signal it

}

Example:

if (val==thresholdMin) {
statement;

} else if (val==thresholdMax) {
statement;

} else {
statement; // handles all other (unforseen)cases

}

FINAL page 15

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
3.3 Object Life Cycle (CL)

In this paragraph it is suggested how objects are best declared, created, initialized, copied,
assigned and destroyed.

3.3.1 Initialization of Variables and Constants

CL1 Declare each variable with the smallest possible scope and initialise it at the same time.
(RECOMMENDED)

It is best to declare variables close to where they are used. Otherwise you may have trouble
finding out the type of a particular variable.

It is also very important to initialise the variable immediately, so that its value is well defined.

CL2 Do not use literals in expression. (RECOMMENDED)

Instead, declare and initialise a const variable and use that variable in subsequent expression.
Exceptions to the rule are the constants {0,1, true, false ,““}.

Example:

int value = -1; // initial value clearly defined
int maxValue; // initial value undefined, NOT recommended

Example:

CL1, CL2 joint example

#include <iostream>
#include <string>
...
// declare variables initialised to numeric values or strings
// in a highly visible position
// whenever possible collected in one place

const string myString = "GoodMorning";
const int numberOfRepetitions = 17;
...
// use symbolic names; do not use numeric values or strings ===>
// we use "numberOfRepetitions" and "myString" rather than the
// actual values AND
// declare each variable with the smallest possible scope
// and initialise it at the same time
for (int i=0; i<numberOfRepetitions; i++) {
 cout << myString << endl;
...
}

// do not recommend the following
for (int i=0; i<17; i++) { ... }
page 16 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
CL3 Declare each type of variable in a separate declaration statement, and do not declare different
types (e.g. int and int pointer) in one declaration statement. (REQUIRED)

Declaring multiple variables on the same line is not recommended. The code will be difficult
to read and understand.

Some common mistakes are also avoided. Remember that when you declare a pointer, a unary
pointer is bound only to the variable that immediately follows.

CL4 Do not use the same variable name in outer and inner scope. (REQUIRED)

Otherwise the code would be very hard to understand; and it would certainly be very error
prone.

Example:

int i, *ip, ia[100], (*ifp)(); // Not recommended

// recommended way:
LoadModule* oldLm = 0; // pointer to the old object
LoadModule* newLm = 0; // pointer to the new object

Bad example: both ip and jp were intended to be pointers to integers but only ip is -- jp is just
an integer!

int* ip, jp;
FINAL page 17

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
3.3.2 Constructor Initializer Lists

CL5 Let the order in the initializer list be the same as the order of the declarations in the header file:
first base classes, then data members. (RECOMMENDED)

It is legal in C++ to list initializers in any order you wish, but you should list them in the same
order as they will be called.

The order in the initializer list is irrelevant to the execution order of the initializers. Putting
initializers for data members and base classes in any order other than their actual
initialization order is therefore highly confusing and can lead to errors.

Class members are initialised in the order of their declaration in the class; the order in which
they are listed in a member initialisation list makes no difference whatsoever! So if you hope
to understand what is really going on when your objects are being initialised, list the members
in the initialisation list in the order in which those members are declared in the class.

Here, in the bad example, "m_data" is initialised first (as it appears in the class) BEFORE you
initialise "m_size" although you’ve put it first in the initialiser list ==> you don’t know how
much memory “m_data” points to!

Bad example:

class Array
{
public:
 Array(int lower, int upper);
private:
 int* m_data;
 unsigned m_size;
 int m_lowerBound;
 int m_upperBound;
};
Array::Array(int lower, int upper) : m_size(upper-lower+1),
m_lowerBound(lower), m_upperBound(upper),m_data(new int[size]) { ...

Correct example:

class Array
{
public:
 Array(int lower, int upper);
private:
 unsigned m_size;
 int m_lowerBound;
 int m_upperBound;
 int* m_data;
};
Array::Array(int lower, int upper) : m_size(upper-lower+1),
m_lowerBound(lower), m_upperBound(upper),m_data(new int[size]) { ...
page 18 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
Virtual base classes are always initialized first, then base classes, data members, and finally
the constructor body for the derived class is run.

 3.3.3 Copying of Objects

RC

CL6 A function must never return, or in any other way give access to, references or pointers to local
variables outside the scope in which they are declared. (REQUIRED)

Returning a pointer or reference to a local variable is always wrong because it gives the user a
pointer or reference to an object that no longer exists.

Example:

class Derived : public Base { // Base is number 1
public:

explicit Derived(int i);
// The keyword explicit prevents the constructor being called implicitly
// Derived dNew = dOld;
// will not work

Derived();
private:

int m_jM; // m_jM is number 2
Base m_bM; // m_bM is number 3

};

Derived::Derived(int i) : Base(i), m_jM(i), m_bM(i) {
// Recommended order 1 2 3

...
}

Example:

Bad example:

You are using a complex number class, Complex, and you write a method that looks like this:

Complex& calculateC1(const Complex& n1, const Complex& n2)
{
 double a = n1.getReal()-2*n2.getReal();
 double b = n1.getImaginary()*n2.getImaginary();

 // create local object
 Complex C1(a,b);

 // return reference to local object
 // the object is destroyed on exit from this function - trouble ahead!
 return C1;
}

In fact, most compilers will spot this and issue a warning.
FINAL page 19

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
CL7 If objects of a class should never be copied, then the copy constructor and the copy assignment
operator should be declared private. (RECOMMENDED)

Ideally the question whether the class has a reasonable copy semantic will naturally be a
result of the design process. Do not define a copy method for a class that should not have it.

By declaring the copy constructor and copy assignment operator as private, you can make a
class non-copyable. They do not have to be implemented, only declared.

RC

CL8 If a class has built-in pointer member data then the copy constructor, the copy assignment
operator and the destructor should all be implemented. (RECOMMENDED)

The compiler will generate a copy constructor, a copy assignment operator, and a destructor if
these member functions have not been declared. A compiler-generated copy constructor does
memberwise initialization and a compiler-generated copy assignment operator does
memberwise assignment of data members and base classes. For classes that manage resources
(examples: memory (new), files, sockets) the generated member functions have probably the
wrong behaviour and must be implemented by the developer. You have to decide if the
resources pointed to must be copied as well (deep copy), and implement the correct
behaviour in the operators. Of course, the constructor and destructor must be implemented as
well.

Example:

There is only one ATLASExperimentalHall that should not be copied and evidently cannot be
compared to another one!

class ATLASExperimentalHall
{
public:
 ATLASExperimentalHall();
 ~ATLASExperimentalHall();
private:
 // private copy constructor - never allow copying
 ATLASExperimentalHall(const ATLASExperimentalHall&) {};
 // private assignment operator
 ATLASExperimentalHall operator=(const ATLAS_ExperimentalHall&) {};
};
page 20 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
Example:

CL10 Assignment member functions must work correctly when the left and right operands are the
same object. (REQUIRED)

This requires some care when writing assignment code, as the case (when left and right
operands are the same) may require that most of the code is bypassed.

Bad Example:

class String
{
public:
 String(const char *value=0);
 ~String(); // destructor but no copy constructor or assignment operator
private:
 char *m_data;
}
String::String(const char *value)
{ // assume correct behaviour implemented in constructor, e.g.
 m_data = new char[strlen(value)]; // fill m_data }
inline String::~String()
{ // assume correct behaviour implemented in destructor, e.g.
 delete m_data; }

In your program:

// declare and construct a ==> m_data of “a” points to "Hello"
String a("Hello");
// open new scope
{ // declare and construct b ==> m_data of “b” points to "World"
 String b("World");
 b=a;
 // execute default op= as synthesised by compiler ==> member-wise assignment
 // i.e. for pointers (m_data) bitwise copy
 // ==> m_data of “a” and “b” now point to the same string "Hello"
 // ==> 1) memory b used to point to never deleted ==> possible memory leak
 // 2) when either a or b goes out of scope, its destructor
 // will delete the memory still pointed to by the other
}
// close scope: b’s destructor called; memory still pointed to by a deleted!
String c=a; // but m_data of “a” is undefined!!

Example:

A& A::operator=(const A& a) {
if (this != &a) { // beware of s=s - "this" and "a" are the same object
// ... implementation of operator= }

}

FINAL page 21

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
3.4 Conversions (CC)

CC1 Use explicit rather than implicit type conversion. (REQUIRED)

Most conversions are bad in some way. They can make the code less portable, less robust, and
less readable. It is therefore important to use only explicit conversions. Implicit conversions
are almost always bad. (but see item CS2)

In general, casts should be strongly discouraged, especially the old style C casts must be
forbidden.

RC

CC2 Use the new cast operators (dynamic_cast and static_cast) instead of the C-style casts.
(REQUIRED)

The new cast operators give the user a way to distinguish between different types of casts.
Their behaviour is well-defined in situations where the behaviour of an ordinary cast is
undefined, or at least ambiguous.

The C++ static_cast operator offers the same functionality and restrictions (e.g. you still
cannot cast a double into a pointer) as the old C-style casts but it respects constness and is
quite visible.

The C++ dynamic_cast operator is used to perform safe casts down or across an inheritance
hierarchy. One can actually determine whether the cast succeeded because failed casts are
indicated either by a bad_cast exception or a null pointer. The use of this type of information
at run time is called Run-Time Type Identification (RTTI).

CC3 Do not convert const objects to non-const. (REQUIRED)

In general you should never cast away the constness of objects.

Exception:

The only rare case when you have to do it is in the case where you need to invoke a function
that has incorrectly specified a parameter as non-const even if it does not modify it. If the
correction of this function is really impossible, then use the cast operator const_cast.

Example:

static_cast
double r = static_cast<double>(n) * a;

dynamic_cast
class Base { };
class Derived : Base { };
void f(Derived* d_ptr)
{
 // if the following cast is inappropriate a null pointer will be returned!
 Base* b_ptr = dynamic_cast<Base*>(d_ptr);
 // ...
}

page 22 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
The keyword mutable allows data members of an object that have been declared const to
remain modifiable, thus reducing the need to cast away constness. The mutable should only
be used for variables which are used for caching information. In other words the object
appears not to have changed but it has stored something to save time on subsequent use.

RC

CC4 Do not use reinterpret_cast. (REQUIRED)

reinterpret_cast is machine-, compiler- and compile-options-dependent. It is a way of
forcing a compiler to accept a type conversion which is dependent on implementation. It
blows away type-safety, violates encapsulation and more importantly, can lead to
unpredictable results.

Exception:

reinterpret_cast is required in some cases if one is not using old-style casts. It is required
for example if you wish to convert a callback function signature (X11, expat, unix signal
handlers are common causes). Some external libraries (X11 in particular) depend on casting
function pointers. If you absolutely have to work around limitations in external libraries, you
may of course use it.

Example:

You are using an external package that provides a Polygon class with a positionPolygon
method defined like this:

void positionPolygon(Polygon* p);

You are now using Polygons in your code:

const Polygon p;
positionPolygon(&p);
// wrong - positionPolygon incorrectly takes a non-const Polygon*
// (you don’t expect the positioning method to change the object it positions)

positionPolygon(const_cast<Polygon*>(&p));
// correct - constness explicitly cast away BUT now Polygon p can be
// inadvertently modified by the positioning...
FINAL page 23

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
3.5 The Class Interface (CI)

3.5.1 Inline Functions

RC

CI1 Header files must contain no implementation except for small functions to be inlined. These
inlines must appear at the end of the header after “};” of the class definition. (REQUIRED)

Inline functions can improve the performance of your program; but they can increase the
overall size of the program and then, in some cases, have the opposite result. It can be hard to
know exactly when inlining is appropriate. In general, inline only very simple functions and
only those functions called frequently.

Use of inlining makes debugging hard and, even worse, can force a complete release rebuild
or large scale recompilation if the inline needs to be changed.

3.5.2 Argument Passing and Return Values

RC

CI2 Functions which have a return value should not modify their arguments nor have any side
effects. (RECOMMENDED)

RC

CI3 (1)Pass an unmodifiable argument by value only if it is of built-in type or small;
(2)otherwise, pass the argument by const reference or by pointer to const. (RECOMMENDED)

An object is considered small if it is a built-in type or if it contains at most one small object.
Built-in types such as char, int, and double can by value because it is cheap to copy such
variables. If an object is larger than the size of its reference (typically 32 bits), it is not efficient
to pass it by value. Of course a built-in type can be passed by reference when appropriate.

(2) Arguments of class type are often costly to copy, so it is convenient to pass a reference (or
in some cases a pointer), preferably declared const, to such objects; in this way the argument
is not copied. Const access guarantees that the function will not change the argument.

Example:

No one would expect the x to be modified when calling sin(x).

Example:

void func(char c); // OK
void func(int i); // OK
void func(double d); // OK
void func(complex<float> c); // OK

void func(Track t); // not good, since Track is large, thus
// there is an overhead in copying t.

Example:

void func(const LongString& s); // const reference
page 24 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
However, besides the speed consideration, pass by reference, pass by value and pass by
pointer represent different design issues. There are times when speed is NOT the key issue,
but clarity or other aspects of design are. For example, to some people, a call by reference vs.
pointer connotes aspects of ownership designs.

RC

CI4 Have operator= return a reference to *this. (REQUIRED)

This ensures that

a = b = c;

will assign c to b and then b to a as is the case with built in objects.

3.5.3 const Correctness

RC

CI5 Declare a pointer or reference argument, passed to a function, as const if the function does not
change the object bound to it. (RECOMMENDED)

An advantage of const-declared parameters is that the compiler will actually give you an
error if you modify such a parameter by mistake, thus helping you to avoid bugs in the
implementation.

RC

CI6 The argument to a copy constructor and to an assignment operator must be a const reference.
(REQUIRED)

This ensures that the object being copied is not altered by the copy or assign.

RC

CI7 In a class method, do not return pointers or non-const references to private data members.
(REQUIRED)

Otherwise you break the principle of encapsulation.

If necessary, you can return a pointer to a const or const reference.

Remember that an iterator is NOT a general pointer, but an object (see reference [1] §19.2). It is
acceptable and even recommended to prefer iterators to const_iterators, because some
container member functions have iterators as arguments. see (Item 26 of reference [5])

An allowed exception to this rule if the use of the singleton pattern. The example of a
singleton pattern given in [3] shows a non const reference to a static object being returned,
whereas the example in [4] shows a pointer to a static object returned. If you use a singleton
pattern be sure to add a clear explanation in a comment so that other developers will
understand what you are doing.

Example:

// operator<< does not modify the String parameter
ostream& operator<<(ostream& out, const String& s);
FINAL page 25

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
RC

CI8 Declare as const a member function that does not affect the state of the object. (REQUIRED)

Declaring a member function as const has two important implications:

• Only const member functions can be called for const objects

• A const member function will not change data members

It is a common mistake to forget to const declare member functions that should be const.

This rule does not apply to the case where a member function which does not affect the state
of the object overrides a non-const member function inherited from some super class.

CI9 Do not let const member functions change the state of the program. (RECOMMENDED)

A const member function promises not to change any of the data members of the object.
Usually this is not enough. It should be possible to call a const member function any number
of times without affecting the state of the complete program. It is therefore important that a
const member function refrains from changing static data members or other objects to which
the object has a pointer or reference.

3.5.4 Overloading and Default Arguments

CI10 Use function overloading only when methods differ in their argument list, but the task performed
is the same. (RECOMMENDED)

Using function name overloading for any other purpose than to group closely related member
functions is very confusing and is not recommended.

3.6 new and delete (CN)

CN1 Match every invocation of new with one invocation of delete in all possible control flows from
new. (REQUIRED)

A missing delete would cause a memory leak.

Note: However, in the Gaudi/Athena framework, an object created with “new” and
registered in the Transient Data Store (TDS) is under control of the TDS and must not be
deleted.

Example:

Every item created by “new” must, at any time, be associated with an entity responsible for
its deletion.
page 26 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
RC

CN2 A function must not use the delete operator on any pointer passed to it as an argument.
(REQUIRED)

Note: This is also to avoid dangling pointers, i.e. pointers to memory which has been given
back. Such code will often continue to work until the memory is re-allocated for another
object.

This is essentially a design issue. This is illustrated in the following example: Suppose that a
track finding algorithm finds some track candidates. These candidates are passed by pointer
to the track matching routine. If a candidate does not match to any calorimeter hit and it is
recognised as fake, who will delete this candidate? The track matching? There are various
solutions but evidently this is a design issue.

CN3 Do not access a pointer or reference to a deleted object. (REQUIRED)

A pointer that has been used as argument to a delete expression should not be used again
unless you have given it a new value, because the language does not define what should
happen if you access a deleted object. This includes trying to delete an already deleted object.
You should assign the pointer to 0 or a new valid object after the “delete” is called; otherwise
you get a “dangling” pointer.

RC

CN4 After deleting a pointer, assign it to zero. (REQUIRED)

C++ guarantees that deletion of zero pointers is safe, so this gives some safety against double
deletes.

3.7 Static and Global Objects (CS)

RC

CS1 Do not declare global variables. (REQUIRED)

If necessary, encapsulate those variables in a class or in a namespace. Global variables violate
encapsulation and can cause global scope name clashes. Global variables make classes that
use them context-dependent, hard to manage and difficult to reuse.

Example:

X* myX = makeAnX();
delete myX;
myX = 0;
FINAL page 27

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
RC

CS2 Do not use global functions except to implement symmetric binary operators. (REQUIRED)

This is the only way to get conversions of the left operand of binary operations to work. It is
common in implementing the symmetric operator to call the corresponding asymmetric
binary operator.

Exception:

Sometimes global functions are required for other reasons, e.g. X11 callbacks, unix signal
handlers. Moreover, there are non-symmetric operators that need to be overloaded globally
(e.g. operator<< and operator>> for iostreams). Other examples include overloading common
pure functions like “abs” or “min” for custom types.

Example:

Complex operator* (const Complex & lhs, const Complex & rhs) {
Complex result(lhs);
return result *= rhs;

}

Here the * operator has been defined for Complex numbers in terms of the *= operator.

Note:

If you implement a binary operator as a member function, say

Rational operator*(const Rational& rhs) const;

you’ll get an error if the left hand operand is not a Rational:

Rational a(3,4);
Rational result;
result = a*2; // fine
// this translates in functional form as result = a.operator*(2)
// and works since "a" is an instance of the class that contains
// an operator* and an implicit type conversion done by the
// compiler takes the integer 2 and creates the corresponding
// Rational by invoking a Rational(int) constructor

result = 2*a; // error
// this translates in functional form as result = 2.operator*(a)
// and fails since the integer 2 has no associated class with
// an operator* member function and the implicit conversion seen
// above cannot be performed here because 2 is not in the
// parameter list of the member function!

If instead you implement: class Rational with no operator* and

Rational operator*(const Rational& lhs, const Rational& rhs)

you restore commutativity i.e. correct math!
page 28 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
3.8 Object-Oriented Programming (CB)

RC

CB1 Do not declare data members to be public. (REQUIRED)

This ensures that data members are only accessed from within member functions. Hiding data
makes it easier to change implementation and provides a uniform interface to the object.

RC

CB2 If a class has at least one virtual method then it must have a public virtual destructor, or
(exceptionally) a protected destructor (REQUIRED)

The destructor of a base class is a member function that in most cases should be declared
virtual. It is necessary to declare it virtual in a base class if derived class objects are deleted
through a base class pointer. If the destructor is not declared virtual, only the base class
destructor will be called when an object is deleted that way.

Exception:

There is a case where it is not appropriate to use a virtual destructor: a mix-in class. Such a
class is used to define a small part of an interface, which is inherited (mixed in) by subclasses.
In these cases the destructor, and hence the possibility of a user deleting a pointer to such a
mix-in base class, should normally not to be part of the interface offered by the base class. It is
best in these cases to have a nonvirtual, nonpublic destructor because that will prevent a user
of a pointer to such a base class from claiming ownership of the object and deciding to simply
delete it. In such cases it is appropriate to make the destructor protected. This will stop users
from accidentally deleting an object through a pointer to the mix-in base-class, so it is no
longer necessary to require the destructor to be virtual.

RC

CB3 Always re-declare virtual functions as virtual in derived classes. (REQUIRED)

This is just for clarity of code. The compiler will know it is virtual, but the human reader may
not. This, of course, also includes the destructor, as stated in item CB2.

Example:

class Point {
public:

Number x() const; // Return the x coordinate
private:

Number m_x; // The x coordinate (safely hidden)
};

The fact that the class Point has a data member m_x which holds the x coordinate is
hidden.
FINAL page 29

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
RC

CB4 Avoid multiple inheritance, except for abstract interfaces. (RECOMMENDED)

Multiple inheritance is seldom necessary, and it is rather complex and error prone.

The only valid exception is for inheriting interfaces or when the inherited behaviour is
completely decoupled from the class’s responsibility.

RC

CB5 Avoid the use of friend declarations. (RECOMMENDED)

Friend declarations are almost always symptoms of bad design and they break encapsulation.
When you can avoid them, you should.

Possible exceptions are operators “<<“ and “>>”, and binary operators on classes.

3.9 Assertions and error conditions (CE)

CE1 Pre-conditions and post-conditions should be checked for validity. (RECOMMENDED)

You should validate your input and output data, whenever an invalid input can cause an
invalid output.

CE2 Make sure assertions are not compiled in the production releases. (REQUIRED)

Assertions should be used for the testing phase. They should not be present in production
releases. This means that if you use assertions you must remember to remove them at the end
of the chain of development releases. (Assertions, when assert(expression) is used, are
automatically discarded if the macro NDEBUG is defined.)

The program will also run faster if unnecessary checks are compiled out.

Assertions which seem to be necessary even in production code, are really exceptions, and
should be treated as such. In other words, you should not use assertions to check conditions
that should always result in throwing an exception if the check fails. Such exceptions are part
of the production code and should not be removable.

Example:

For a detailed example of a reasonable application of multiple inheritance, see Ref. [3] item
43.
page 30 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
3.10 Error Handling (CH)

CH1 Use the standard error printing facility for informational messages. Do not use cerr and cout.
(RECOMMENDED)

The “standard error printing facility” in Athena/Gaudi is “MsgStream”. No production code
should use cout. Classes which are not Athena-aware could use cerr before throwing an
exception, but all Athena-aware classes should use “MSG::FATAL” and/or throw a Gaudi
Exception.

CH2 Check for all errors reported from functions. (REQUIRED)

It is important to always check error conditions, regardless of how they are reported. If a
function throws exceptions, it is important to catch all of them.

CH3 Use exception handling instead of status values and error codes. (RECOMMENDED)

Exceptions in C++ are a means of separating error reporting from error handling. They should
be used for reporting errors that the calling code should not be expected to handle. An
exception is “thrown” to an error handler, so the treatment becomes non-local.

Because an exception is an object, an arbitrary amount of error information can be stored in an
exception object; the more information that is available, the greater the chance that the correct
decision is made for how to handle the error.

Note that when you throw an exception, control DOES NOT return to the throw site, and you
usually have to do some cleaning up in order to leave, or continue, the program execution
gracefully.

In certain cases, exception handling can be localized to one function along a call chain; this
implies that less code needs to be written, and it is more legible.

Example:

try {
// ordinary flow of control
f();
g();

}
catch(...) { // handler for any kind of exception
// but as you do not know what you might catch with this syntax
// probably the only thing to do is to stop as cleanly as you can

// error handling
}

FINAL page 31

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
Example:

Examples for CH2 and CH3:

Catch all exceptions:

try
{
 // code that may throw various exceptions
}
catch (std::ios_base::failure { // handle any stream io error }
catch (std::exception& e) { // handle any standard library exception }
catch (...) { // catch any other exception }

The order of handlers matters: if the catch-all handler (see below) came first, for instance,
the standard library exception handler would never be considered.

On some occasions it may be necessary to re-throw an exception. This happens for example
when the handler may decide that it cannot completely handle the error or when the
information needed to handle it is not available in a single handle.

Re-throw if necessary:

try
{
 // code that may throw an error, say of type SizeError
}
catch (SizeError)
{
 if(Error_Can_Be_Handled)
 {
 // do something
 return;
 }
 else
 {
 // do something else and
 // re-throw the exception: throw() without an operand
 throw;
 }
}

One way of catching every exception:

try
{
 // code that may throw an error, say of type SizeError
}
catch (...) // the ellipsis here means "catch any exception"
{
 // cleanup
 throw;
}

page 32 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
CH4 Do not throw exceptions as a way of reporting uncommon values from a function.
(RECOMMENDED)

If an error CAN be handled locally, then it should be. Exceptions should not be used to signal
events which can be expected to occur in a regular program execution. It is up to
programmers to decide what it means to be exceptional in each context.

RC

CH5 Use exception specifications to declare which exceptions might be thrown from a function.
(RECOMMENDED)

If a function does not have an exception specification, that function is allowed to throw any
type of exception; that makes code unreliable and difficult to understand.

It is recommended to use exception specification as much as possible. The compiler will check
that the exception classes exist and are available to the user. Compilers are also sometimes
able to detect inconsistent exception specification during compilation

Syntactically, an exception specification is part of a function declaration or function definition,
and has the form:

 function header throw (type list)
 e.g. void foo() throw(int, over_flow);

The type list is the list of types that a throw expression within the function can have. If the list
is empty (e.g. void noex(int i) throw();) the compiler may assume that no throw will
be executed by the function, either directly or indirectly.

The function definition and the function declaration must write out the exception
specification identically: .

Example:

Take the case of a function find(). It is quite common that the object looked for is not
found, and it is certainly not a failure; it is therefore not reasonable in this case to throw an
exception. It is clearer if you return a well defined value.

Example:

Wrong:

 void foo() throw(int, over_flow);

 void foo() // error: exception-specification missing!
 {
 // do something
 }

Correct:

 void foo() throw(int, over_flow);

 void foo() throw(int, over_flow)
 {
 // do something
 }
FINAL page 33

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
Warnings:

Without a clear policy on exceptions, specifications can cause a great deal of problems.

Exception specifications may have unexpected run-time overheads. It has to be understood
whether these overheads are significant and whether compilers are likely to optimise them in
the future.

Class or method documentation should mention what exceptions the class

1. throws

2. passes through

3. swallows

4. if the code is exception safe and what kind of exception semantics it has (e.g. if the
class implements full commit-or-rollback, or whether it just makes it safe to delete the
object later, or something in between)

5. what exception semantics and behaviour it expects from other classes it uses,
especially if abstract interfaces are involved.

All this is more than what can be deduced from exception specifications.

3.11 Parts of C++ to Avoid (CA)

Here a set of different items are collected. They highlight parts of the language which should
be avoided, because there are better ways to achieve the desired results. In particular,
programmers should avoid using the old standard C functions, where C++ has introduced
new and safer possibilities.

RC

CA1 Do not use malloc, calloc, realloc and free. Use new and delete instead. (REQUIRED)

You must avoid all memory-handling functions from the standard C-library (malloc,
calloc, realloc and free) because they do not call constructors for new objects or
destructors for deleted objects.
page 34 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
RC

CA2 Do not use functions defined in stdio. Use the iostream functions in their place
(RECOMMENDED)

scanf and printf are not type-safe and they are not extensible. Use operator>> and
operator<< associated with C++ streams instead. iostream and stdio functions should
never be mixed.

Example :

// type safety
char* aString("Hello Atlas");
printf("This works: %s \n", aString);
cout <<"This also works:"<<aString<<endl;
char aChar(‘!’);
printf("This does not %s \n", aChar);// and you get a core dump
cout <<"But this is still OK :"<<aChar<<endl;

//extensibility
std::string aCPPString("Hello Atlas");
printf("This does not work: %s \n", aCPPString); //Core dump again

Example : Taken from offline/Control/StoreGateSvc.cxx

#include <iostream>
..............
#ifndef HAVE_NEW_IOSTREAMS
#include <strstream> /*gnu-specific*/
typedef strstream t_sstream;
#else
#include <sstream>
typedef std::ostringstream t_sstream;
#endif
..............
t_sstream ost;
..............
// loop over each type:
 SG::ConstProxyIterator p_iter = (s_iter->second).begin();
 SG::ConstProxyIterator p_end = (s_iter->second).end();
while (p_iter != p_end) {
 const DataProxy& dp(*p_iter->second);
 ost << " flags: ("
 << setw(7) << (dp.isValid() ? "valid" : "INVALID") << ", "
 << setw(8) << (dp.isConst() ? "locked" : "UNLOCKED") << ", "
 << setw(6) << (dp.isResetOnly() ? "reset" : "DELETE")
 << ") --- data: " << hex << setw(10) << dp.object() << dec
 << " --- key: " << p_iter->first << '\n';
 ++p_iter;
 }
FINAL page 35

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
RC

CA3 Do not use the ellipsis notation for function arguments. (REQUIRED)

Functions with an unspecified number of arguments should not be used because they are a
common cause of bugs that are hard to find. But catch(...) to catch any exception is acceptable.

RC

CA4 Do not use preprocessor macros, except for system provided macros. (RECOMMENDED)

Use templates or inline functions rather than the pre-processor macros.

RC

CA5 The only permissible use of #ifdef is to precede a block of non-portable code or to allow the
template declaration as CT1. (REQUIRED)

CA6 Do not declare related numerical values as const. Use enum declarations. (REQUIRED)

The enum construct allows a new type to be defined and hides the numerical values of the
enumeration constants.

RC

CA7 Do not use NULL to indicate a null pointer; use the integer constant 0. (REQUIRED)

No object is allocated with the address 0. Consequently, 0 acts as a pointer literal, indicating
that a pointer doesn’t refer to an object. In C, it has been popular to define a macro NULL to
represent the zero pointer. Because of C++’s tighter type checking, the use of plain 0, rather
than any suggested NULL macro, leads to fewer problems.

Example:

// avoid to define functions like:

void error(int severity ...) // “severity” followed by a
// zero-terminated list of char*s

Example:

// NOT recommended to have function-like macro
#define SQUARE(x) x*x

Better to define an inline function:

inline int square(int x) {
return x*x;

};

Example:

enum State {halted, starting, running, paused};
page 36 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
RC

CA8 Do not use const char* or built-in arrays “[]”; use std::string instead. (REQUIRED)

The standard library, STL is the accepted standard for ATLAS. Use STL whenever it has the
desired functionality.

Note: some exceptions might be necessary for online software.

RC

CA9 Do not use union types. (REQUIRED)

Unions can be an indication of a non-object-oriented design that is hard to extend. The usual
alternative to unions is inheritance and dynamic binding. The advantage of having a derived
class representing each type of value stored is that the set of derived class can be extended
without rewriting any code. Because code with unions is only slightly more efficient, but
much more difficult to maintain, you should avoid it.

Note: some exceptions might be necessary for online software.

RC

CA10 Do not use asm (the assembler macro facility of C++). (REQUIRED)

Note: some exceptions might be necessary for online software.

RC

CA11 Do not use the keyword struct. (RECOMMENDED)

The class is identical to the struct except that by default its contents are private rather
than public.

struct may be allowed for writing non-object-oriented PODs (plain old data, i.e. C structs)
on purpose. It is a good indication that the code is on purpose not object oriented, e.g. in some
hidden internals of complicated classes or in bottom layers of interfacing to the host system.

RC

CA12 Do not use file scope objects; use class scope instead. (REQUIRED)

File scope is a useless complication that is better to be avoided.

RC

CA13 Do not declare your own typedef for booleans. Use the bool type of C++ for booleans.
(REQUIRED)

The bool type was not implemented in C. Programmers usually got around the problem by
typedefs and/or const declarations. This is no longer needed, and must not be used in ATLAS
code.

RC

CA14 Avoid pointer arithmetic. (REQUIRED)

Pointer arithmetic reduces readability, and is extremely error prone.
FINAL page 37

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
3.12 Readability and maintainability (CR)

CR1 Avoid duplicated code. (RECOMMENDED)

This statement has a twofold meaning.

The first and most evident is that one must avoid simply cutting and pasting pieces of code.
When similar functionalities are necessary in different places, they should be collected in
methods, and reused.

The second meaning is at the design level, and is the concept of code reuse.

Note:

Reuse of code has the benefit of making a program easier to understand and to maintain. An
additional benefit is better quality because code that is reused gets tested much better.

Code reuse, however, is not the end-all goal, and in particular, it is less important than
encapsulation. One should not use inheritance to reuse a bit of code from another class.

CR2 Document in the code any cases where clarity has been sacrificed for performance. (REQUIRED)

Optimise code only when you know you have a performance problem. This means that
during the implementation phase you should write code that is easy to read, understand and
maintain. Do not write cryptic code, just to improve its performance.

Very often bad performance is due to bad design. Unnecessary copying of objects, creation of
large numbers of temporary objects and improper inheritance, poor choice of algorithms, for
example, can be rather costly and are best addressed at the architecture and design level.

RC

CR3 If you use a Typedef it should be declared private or protected. (REQUIRED)

Typedefs are a serious impediment in large systems. While they simplify code for the original
author, a system filled with typedefs can be difficult to understand. If the reader encounters a
class A, he can find an #include with “A.h” in it to locate a description of A, but typedefs carry
no context that tell a reader where to find a definition. Moreover, most of the generic
characteristics obtained with typedefs are better handled by object oriented techniques, like
polymorphism.

A typedef statement, which is declared within a class as private or protected, is used within a
limited scope and is therefore acceptable.

CR4 Code should be written to use standard Atlas units for time, distance, energy, etc.
(RECOMMENDED)

This rule will not be effective until ATLAS has a standard way of dealing with units.
page 38 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
3.13 Portability (CP)

CP1 All code must be adherent to the ANSI C++ standard. (REQUIRED)

Note: Adhesion to the standard must be done to the extent that the selected compilers allow it.

CP2 Make non-portable code easy to find and replace. (REQUIRED)

Isolate non-portable code as much as possible so that it is easy to find and replace. For that
you can use the directive #ifdef.

However, #ifdefs can make a program completely unreadable. In addition, if the problems
being solved by the ifdef are not solved centrally by the release tool, then you resolve the
problem over and over. Therefore. the using of #ifdef should be limited.

CP3 Headers supplied by the implementation (system or standard libraries header files) must go in
<> brackets; all other headers must go in ““ quotes. (REQUIRED)

RC

CP4 Do not specify absolute directory names in include directives. Instead, specify only the
terminal package name and the file name. (REQUIRED)

It is better to specify to the build environment where files may be located because then you do
not need to change any include directives if you switch to a different platform.

CP5 Always treat include file names as case-sensitive. (REQUIRED)

Some operating systems, e.g. Windows NT, do not have case-sensitive file names. You should
always include a file as if it were case-sensitive. Otherwise your code could be difficult to port
to an environment with case-sensitive file names.

Example:

// Include only standard header with <>
#include <iostream> // OK: standard header
#include <MyFyle.hh> // NO: nonstandard header

// Include any header with ““
#include “stdlib.h” // NO: better to use <>
#include “MyPackage/MyFyle.h” // OK

Example:

#include “/afs/cern.ch/atlas/software/dist/1.2.1/Foo/Bar/Qux.h” // Wrong
#include “Bar/Qux.h” // Right

Example:

// Includes the same file on Windows NT, but not on UNIX
#include <Iostream> //not correct
#include <iostream> //OK
FINAL page 39

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
CP6 Do not make assumptions about the size or layout in memory of an object. (RECOMMENDED)

The sizes of built-in types are different in different environment. For example, an int may be
16, 32 or even 64 bits long. The layout of objects is also different in different environments, so
it is unwise to make any kind of assumption about the layout in memory of objects.

CP7 Take machine precision into account in your conditional statements. Do not compare floats or
doubles for equality. (REQUIRED)

Have a look at the numeric_limits<T> class, and make sure your code is not platform
dependent. In particular, take care when testing floating point values for equality.

CP8 Do not depend on the order of evaluation of arguments to a function, in particular never use ++
and -- operators on method arguments in function calls. (REQUIRED)

The order of evaluation of function arguments is strongly compiler dependent. The behaviour
of foo(a++, vec(a)); is platform dependent.

CP9 Do not use system calls if there is another possibility (e.g. the C++ run time library). (REQUIRED)

For example, do not forget about non-unix platforms.

RC

CP10 Use long (not int) and double (not float). (RECOMMENDED)

This ensures sufficient storage without rollover but, more importantly, reduces
incompatibility between clients/consumers that use integral and floating point data.

Indexes of “for” loops are excluded from the rule.

Example:

it is better to use:

const double tolerance = 0.001;
...
#include <math.h>
if (fabs(value1 - value2) < tolerance) ...

than

if (value1 == value2) ...

Example:

func(f1(), f2(), f3());
// f1 may be evaluated before f2 and f3,
// but don’t depend on it!
page 40 FINAL

ATLAS C++ Coding Standard Specification
3 Coding Version/Issue: 1.2/1
CP11 Do not call any code that is not in the release or is not in the list of allowed external software.
(REQUIRED)

CP12 Use the capabilities of the release tools system rather than writing or extending the makefiles.
(REQUIRED)

As the system grows, per-package customizing of makefiles would make control of the build
process impossible.

3.14 C++ Templates (CT)

Templates are powerful and should be used when needed. But it should be recognized that
templates can increase the size of the executable, increase the compilation time, and can create
code that can not be repaired by simple re-linking, forcing release builds.

RC

CT1 Declare a template in a.h file, as for any other class, but conditionally include the definition at the
end. (REQUIRED)

Different compilers handle class and function templates in different ways. Some want the
template definition to be included into the source code of consumers, others do not. To give
systems level control to this process, the following way of organizing templates is
recommended.

CT2 Exclude template definition (.cxx) files from the library list. (REQUIRED)

The .cxx files with template definitions must be excluded from the “list of things to compile
into the package’s library”.

Example:

Declare the template in a .h file, as for any other class, but conditionally
include the definition at the end:

X.h:
 template <class T>
 class X {
 ... template class declaration
 };

 #ifdef ATLAS_COMP_INST
 #include “Package/X.cxx”
 #endif

In the implementation file:

X.cxx:
 #include “Package/X.h”
 ... implement the class
FINAL page 41

ATLAS C++ Coding Standard Specification Document
3 Coding Version/Issue: 1.2/1
CT3 Templates must be tested by a program which instantiates them. Exclude the test program from
the library list. (REQUIRED)

If you provide class or function templates in a package, then you must write a test application
that instantiates these templates. Exclude this test from your library, but you must compile it
as a pre-release test to insure that the template code can compile. Templates are only compiled
when instantiated, so if they are not tested there may be an error which will be revealed only
when a client uses your code.

CT4 Class and function templates must not depend upon the context of the translation file
instantiating them. (REQUIRED)

For example, you should not have a template that depends upon a typedef, enum or other
global quantity that is provided by the caller. Otherwise, template instantiations made in
A.cxx may differ from those in B.cxx.
page 42 FINAL

ATLAS C++ Coding Standard Specification
4 Style Version/Issue: 1.2/1
4 Style

Code is always written in a particular style. Discussing style is highly controversial. This
section contains indications aimed at defining one style that should allow a common and
consistent “style of the code”, i.e. a common look. Style relates to matters which do not affect
the output of the compiler.

4.1 General aspects of style (SG)

RC

SG1 The public, protected and private sections of a class must be declared in that order. Within
each section, nested types (e.g. enum or class) must appear at the top. (REQUIRED)

The public part should be most interesting to the user of the class, and should therefore come
first. The private part should be of no interest to the user and should therefore be listed last in
the class declaration.

RC

SG2 Keep the ordering of methods in the header file and in the source files identical. (REQUIRED)

This facilitates the readability of the class implementation.

RC

SG3 Statements should not exceed 100 characters (excluding leading spaces). If possible, break long
statements up into multiple ones. (RECOMMENDED)

RC

SG4 Limit line length to 120 character positions (including white space and expanded tabs).
(REQUIRED)

Example:

class Path {
public:

Path();
~Path();

protected:
void draw();

private:
class Internal {
// Path::Internal declarations go here ...
};

};
FINAL page 43

ATLAS C++ Coding Standard Specification Document
4 Style Version/Issue: 1.2/1
RC

SG5 Include meaningful dummy argument names in function declarations. Any dummy argument
names used in function declarations must be the same as in the definition. (REQUIRED)

Although they are not compulsory, dummy arguments improve a lot the understanding and
use of the class interface.

SG6 The code should be properly indented for readability reasons. (RECOMMENDED)

Amount of indentation is hard to regulate. If a recommendation were to be given then four
spaces seem reasonable since it guides the eye well, without running out of space in a line too
soon. The important thing is that if one is modifying someone else’s code, the indentation
style of the original code should be adopted.

RC

SG7 Do not use spaces in front of [], (), and to either side of . and ->, in references to functions or
arrays. (REQUIRED)

Example:

The constructor below takes 2 Numbers, but what are they?

class Point {
public:
 Point (Number, Number);
}

the following is clearer

class Point {
public:
 Point (Number x, Number y);
}

because the meaning of the parameters is explicitly indicated.

This rule does not apply to spaces which follow C++ keywords such as if, for, and switch.

Example:

a->foo(); // Good
b.bar(); // Good
b . bar(); // Not good
page 44 FINAL

ATLAS C++ Coding Standard Specification
4 Style Version/Issue: 1.2/1
SG8 Keep the style of each file consistent within itself. (RECOMMENDED)

Although standard appearance amongst ATLAS source files is desirable, when you modify a
file, code in the style that already exists in that file. This means, leave things as you find them.
Do not take a non-compliant file and adjust a portion of it that you work on. Either fix the
whole thing, or code to match.

4.2 Comments (SC)

RC

SC1 Use javadoc style comments BEFORE class/method/field declarations. Use "//" for comments
in method bodies. (RECOMMENDED)

Atlas has adopted the Doxygen code documentation tool, which requires a specific format for
comments; also the recommended CASE tool (Together) produces javadoc style comments,
which are recognized by Doxygen. But this style of comment "/**/" does not nest; therefore
you would have problems if you were to nest them by accident.

You should be careful to use “#if 0” and #endif rather than /**/ comments to temporarily
kill blocks of code.

For help on Doxygen style comments see the Atlas sit “How_to” page at

http://atlas-sw.cern.ch/cgi-bin/cvsweb.cgi/~checkout~/offline/AtlasDoc/doc/sit/UserDe
v_HowTo.html

SC2 All comments should be written in complete (short and expressive) English sentences.
(RECOMMENDED)

The quality of the comments is an important factor for the understanding of the code.
FINAL page 45

ATLAS C++ Coding Standard Specification Document
4 Style Version/Issue: 1.2/1
SC3 In the header file, provide a comment describing the use of a declared function and attributes, if
this is not completely obvious from its name, also a comment describing what a method does
(REQUIRED)

SC4 In the implementation file, above each method implementation, provide a comment describing
what the method does (if not obvious), and the preconditions and postconditions. (REQUIRED)

The code of a method will be much easier to understand and maintain, if it is well explained
in an initial comment.

Example:

class Point {
public:

// Perpendicular distance of Point from Line
Number distance (Line);

}

the comment includes the fact that it is the perpendicular distance.
page 46 FINAL

ATLAS C++ Coding Standard Specification
A Terminology Version/Issue: 1.2/1
A Terminology

The terminology used by this book is as defined by the “Standard for the Programming
Language C++” [2], with some additions presented below.

Abstract interface An abstract interface is a class in which all methods are virtual and
which has no member data.

Built-in type A built-in type is one of the types defined by the language, such as
int, short, char, and bool.

const correct A program is const correct if it has correctly declared functions,
parameters, return values, variables, and member functions as
const.

Copy assignment
operator The copy assignment operator of a class is the assignment operator

that takes a reference to an object of the same class as a parameter.

Copy constructor The copy constructor of a class is the constructor that takes a
reference to an object of the same class as a parameter.

Dangling pointer A dangling pointer points at an object that has been deleted.

Direct base class The direct base class of a class is the class explicitly mentioned as a
base class in its definition. All other base classes are indirect base
classes.

Dynamic binding A member function call is dynamically bound if different functions
will be called depending on the type of the object operated on.

Encapsulation Encapsulation allows a user to depend only on the class interface,
and not upon its implementation.

Exception safe A class is exception safe if its objects do not lose any resources, and
do not invalidate their class invariant or terminate the application
when they end their lifetimes because of an exception.

Explicit type conversion An explicit type conversion is the conversion of an object from one
type to another where you explicitly write the resulting type.

File scope An object with file scope is accessible only to functions within the
same translation unit.

Forwarding function A forwarding function is a function that does nothing more than call
another function.

Global object A global object is an object in global scope.

Global scope An object or type is in global scope if it can be accessed from within
any function of a program.

Implementation-defined
behaviour Code with implementation-defined behaviour is completely legal

C++, but compilers may differ. Compiler vendors are required to
describe what their particular compiler does with such code.
FINAL page 47

ATLAS C++ Coding Standard Specification Document
A Terminology Version/Issue: 1.2/1
Implicit type conversion An implicit type conversion occurs when an object is converted
from one type to another and when you do not explicitly write the
resulting type.

Inheritance A derived class inherits state and behaviour from a base class.

Inline definition file An inline definition file is a file that contains only definitions of
inline functions.

Iterator An iterator is an object used to traverse through collections of objects.

Literal A literal is a sequence of digits or characters that represents a
constant value.

Member object The member objects of a class are its base classes and data members.

Modifying function
(modifier) A modifying function (modifier) is a member function that changes

the value of at least one data member.

Non-copyable class A class is non-copyable if its objects cannot be copied.

Object-Oriented
programming A language supports object-oriented programming if it provides

encapsulation, inheritance, and polymorphism.

Polymorphism Polymorphism means that an expression can have many different
interpretations depending on the context. This means that the same
piece of code can be used to operate on many types of objects, as
provided by dynamic binding and parameterization, for example.

Postcondition A postcondition is a condition that must be true on exit from a
member function if the precondition was valid on entry to that
function. A class is implemented correctly if postconditions are never
false.

Precondition A precondition is a condition that must be true on entry to a member
function. A class is used correctly if preconditions arc never false.

Resource A resource is something that more than one program needs, but of
which there is limited availability. Resources can be acquired and
released.

State The state of an object is the data members of the object, and possibly
also other data to which the object has access, which affects the
observable behaviour of the object.

Template definition file A template definition file is a file containing only definitions of
non-inline template functions.

Translation unit A translation unit is the result of merging an implementation file
with all its headers and header files.

Undefined behaviour Code with undefined behaviour is not correct C++. The standard
does not specify what a compiler should do with such code. It may
ignore the problem completely, issue an error, or do something else.

Unspecified behaviour Code with unspecified behaviour is completely legal C++, but
compilers may differ. Compiler vendors are not required to describe
what their particular compiler does with such code.
page 48 FINAL

ATLAS C++ Coding Standard Specification
A Terminology Version/Issue: 1.2/1
User-defined conversion A user-defined conversion is a conversion from one type to another
introduced by a programmer; that is, it is not one of the conversions
defined by the language. Such user-defined conversions are either
non explicit constructors taking only one parameter, or conversion
operators.
FINAL page 49

ATLAS C++ Coding Standard Specification Document
A Terminology Version/Issue: 1.2/1
page 50 FINAL

ATLAS C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.2/1
B List of the items of the standard

2.1 Naming of files (NF)

NF1 The name of the header file must be the same as the name of the class it defines, with a suffix ".h"
appended. (REQUIRED) 7

NF2 The name of the implementation file must be the same as the name of the class it implements, with a suffix
“.cxx” appended. (REQUIRED) 7

2.2 Meaningful Names (NM)

NM1 Use pronounceable English words or acronyms widely used in the experiment to compose all lexical
entities except for local loop variables and array indices. (RECOMMENDED) 7

2.3 Illegal or Non-recommended Naming (NI)

NI1 Do not create very similar names. (RECOMMENDED) 8

NI2 Do not use identifiers that begin with an underscore. (REQUIRED) 8

2.4 Naming Conventions (NC)

NC1 Use prefix “m_” for private attributes (i.e. data members) in each class. (REQUIRED) . . . 8

NC2 Use prefix “s_” for private static attributes (i.e. class data members). (RECOMMENDED). . . 8

NC3 The choice of prefixes for package names and the choice of name for namespaces should be agreed upon
by the communities concerned and should, where appropriate, correspond to the Product Breakdown
Structure (PBS). (RECOMMENDED) 8

NC4 Use namespace to avoid name conflicts between classes. (REQUIRED). 8

NC5 Start class names, typedefs and enum types with an uppercase letter. (REQUIRED) . . . 10

NC6 Start names of variables and functions with a lowercase letter. (REQUIRED) 10

NC7 In names that consist of more than one word, write the words together, and start each word that follows the
first one with an upper case letter. (RECOMMENDED) 10

NC8 All package names in the release must be unique, independent of the package’s location in the hierarchy.
(REQUIRED). 11

NC9 Underscores should be avoided in package names. (RECOMMENDED) 11
FINAL page 51

ATLAS C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.2/1
3.1 Organizing the Code (CO)

CO1 Header files must begin and end with multiple-inclusion protection. (REQUIRED) 13

CO2 Use forward declaration instead of including a header file, if this is sufficient. (RECOMMENDED) . 13

CO3 Each header file must contain one class (or embedded or very tightly coupled classes) declaration only.
(REQUIRED) 14

CO4 Implementation files must hold the member function definitions for a single class (or embedded or very
tightly coupled classes) as defined in the corresponding header file. (REQUIRED) 14

CO5 Ordering of #include statements. (RECOMMENDED) 14

3.2 Control Flow (CF)

CF1 Do not change a loop variable inside a for loop block. (REQUIRED) 14

CF2 All switch statements must have a default clause. (REQUIRED) 14

CF3 Each clause of a switch statement must end with “break”. (REQUIRED) 15

CF4 An “if statement” which does not fit in one line must have brackets around the conditional statement.
(REQUIRED) 15

CF5 Do not use goto. (REQUIRED) 15

3.3 Object Life Cycle (CL)

3.3.1 Initialization of Variables and Constants

CL1 Declare each variable with the smallest possible scope and initialise it at the same time.
(RECOMMENDED) 16

CL2 Do not use literals in expression. (RECOMMENDED) 16

CL3 Declare each type of variable in a separate declaration statement, and do not declare different types (e.g.
int and int pointer) in one declaration statement. (REQUIRED) 17

CL4 Do not use the same variable name in outer and inner scope. (REQUIRED). 17

3.3.2 Constructor Initializer Lists

CL5 Let the order in the initializer list be the same as the order of the declarations in the header file: first base
classes, then data members. (RECOMMENDED) 18
page 52 FINAL

ATLAS C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.2/1
3.3.3 Copying of Objects

CL6 A function must never return, or in any other way give access to, references or pointers to local variables
outside the scope in which they are declared. (REQUIRED) 19

CL7 If objects of a class should never be copied, then the copy constructor and the copy assignment operator
should be declared private. (RECOMMENDED) 20

CL8 If a class has built-in pointer member data then the copy constructor, the copy assignment operator and the
destructor should all be implemented. (RECOMMENDED) 20

CL10 Assignment member functions must work correctly when the left and right operands are the same object.
(REQUIRED) 21

3.4 Conversions (CC)

CC1 Use explicit rather than implicit type conversion. (REQUIRED) 22

CC2 Use the new cast operators (dynamic_cast and static_cast) instead of the C-style casts.
(REQUIRED) 22

CC3 Do not convert const objects to non-const. (REQUIRED) 22

CC4 Do not use reinterpret_cast. (REQUIRED) 23

3.5 The Class Interface (CI)

3.5.1 Inline Functions

CI1 Header files must contain no implementation except for small functions to be inlined. These inlines must
appear at the end of the header after “};” of the class definition. (REQUIRED) 24

3.5.2 Argument Passing and Return Values

CI2 Functions which have a return value should not modify their arguments nor have any side effects.
(RECOMMENDED) 24

CI3 (1)Pass an unmodifiable argument by value only if it is of built-in type or small;
(2)otherwise, pass the argument by const reference or by pointer to const. (RECOMMENDED) . 24

CI4 Have operator= return a reference to *this. (REQUIRED) 25

3.5.3 const Correctness

CI5 Declare a pointer or reference argument, passed to a function, as const if the function does not change
the object bound to it. (RECOMMENDED) 25
FINAL page 53

ATLAS C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.2/1
CI6 The argument to a copy constructor and to an assignment operator must be a const reference.
(REQUIRED) 25

CI7 In a class method, do not return pointers or non-const references to private data members. (REQUIRED)
25

CI8 Declare as const a member function that does not affect the state of the object. (REQUIRED) . 26

CI9 Do not let const member functions change the state of the program. (RECOMMENDED) . . 26

3.5.4 Overloading and Default Arguments

CI10 Use function overloading only when methods differ in their argument list, but the task performed is the
same. (RECOMMENDED) 26

3.6 new and delete (CN)

CN1 Match every invocation of new with one invocation of delete in all possible control flows from new.
(REQUIRED) 26

CN2 A function must not use the delete operator on any pointer passed to it as an argument. (REQUIRED)
27

CN3 Do not access a pointer or reference to a deleted object. (REQUIRED). 27

CN4 After deleting a pointer, assign it to zero. (REQUIRED) 27

3.7 Static and Global Objects (CS)

CS1 Do not declare global variables. (REQUIRED) 27

CS2 Do not use global functions except to implement symmetric binary operators. (REQUIRED) . . 28

3.8 Object-Oriented Programming (CB)

CB1 Do not declare data members to be public. (REQUIRED) 29

CB2 If a class has at least one virtual method then it must have a public virtual destructor, or (exceptionally) a
protected destructor (REQUIRED). 29

CB3 Always re-declare virtual functions as virtual in derived classes. (REQUIRED) 29

CB4 Avoid multiple inheritance, except for abstract interfaces. (RECOMMENDED) 30

CB5 Avoid the use of friend declarations. (RECOMMENDED) 30
page 54 FINAL

ATLAS C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.2/1
3.9 Assertions and error conditions (CE)

CE1 Pre-conditions and post-conditions should be checked for validity. (RECOMMENDED) . . . 30

CE2 Make sure assertions are not compiled in the production releases. (REQUIRED) 30

3.10 Error Handling (CH)

CH1 Use the standard error printing facility for informational messages. Do not use cerr and cout.
(RECOMMENDED) 31

CH2 Check for all errors reported from functions. (REQUIRED) 31

CH3 Use exception handling instead of status values and error codes. (RECOMMENDED) . . . 31

CH4 Do not throw exceptions as a way of reporting uncommon values from a function. (RECOMMENDED)33

CH5 Use exception specifications to declare which exceptions might be thrown from a function.
(RECOMMENDED) 33

3.11 Parts of C++ to Avoid (CA)

CA1 Do not use malloc, calloc, realloc and free. Use new and delete instead. (REQUIRED) 34

CA2 Do not use functions defined in stdio. Use the iostream functions in their place (RECOMMENDED)35

CA3 Do not use the ellipsis notation for function arguments. (REQUIRED) 36

CA4 Do not use preprocessor macros, except for system provided macros. (RECOMMENDED) . . 36

CA5 The only permissible use of #ifdef is to precede a block of non-portable code or to allow the template
declaration as CT1. (REQUIRED) 36

CA6 Do not declare related numerical values as const. Use enum declarations. (REQUIRED) . . 36

CA7 Do not use NULL to indicate a null pointer; use the integer constant 0. (REQUIRED) 36

CA8 Do not use const char* or built-in arrays “[]”; use std::string instead. (REQUIRED) . . . 37

CA9 Do not use union types. (REQUIRED) 37

CA10 Do not use asm (the assembler macro facility of C++). (REQUIRED) 37

CA11 Do not use the keyword struct. (RECOMMENDED) 37

CA12 Do not use file scope objects; use class scope instead. (REQUIRED) 37

CA13 Do not declare your own typedef for booleans. Use the bool type of C++ for booleans. (REQUIRED)37

CA14 Avoid pointer arithmetic. (REQUIRED) 37
FINAL page 55

ATLAS C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.2/1
3.12 Readability and maintainability (CR)

CR1 Avoid duplicated code. (RECOMMENDED) 38

CR2 Document in the code any cases where clarity has been sacrificed for performance. (REQUIRED) 38

CR3 If you use a Typedef it should be declared private or protected. (REQUIRED) 38

CR4 Code should be written to use standard Atlas units for time, distance, energy, etc. (RECOMMENDED)38

3.13 Portability (CP)

CP1 All code must be adherent to the ANSI C++ standard. (REQUIRED) 39

CP2 Make non-portable code easy to find and replace. (REQUIRED) 39

CP3 Headers supplied by the implementation (system or standard libraries header files) must go in <> brackets;
all other headers must go in ““ quotes. (REQUIRED) 39

CP4 Do not specify absolute directory names in include directives. Instead, specify only the terminal package
name and the file name. (REQUIRED) 39

CP5 Always treat include file names as case-sensitive. (REQUIRED) 39

CP6 Do not make assumptions about the size or layout in memory of an object. (RECOMMENDED) . 40

CP7 Take machine precision into account in your conditional statements. Do not compare floats or doubles for
equality. (REQUIRED) 40

CP8 Do not depend on the order of evaluation of arguments to a function, in particular never use ++ and --
operators on method arguments in function calls. (REQUIRED) 40

CP9 Do not use system calls if there is another possibility (e.g. the C++ run time library). (REQUIRED) 40

CP10 Use long (not int) and double (not float). (RECOMMENDED) 40

CP11 Do not call any code that is not in the release or is not in the list of allowed external software. (REQUIRED)
41

CP12 Use the capabilities of the release tools system rather than writing or extending the makefiles.
(REQUIRED) 41

3.14 C++ Templates (CT)

CT1 Declare a template in a.h file, as for any other class, but conditionally include the definition at the end.
(REQUIRED) 41

CT2 Exclude template definition (.cxx) files from the library list. (REQUIRED) 41

CT3 Templates must be tested by a program which instantiates them. Exclude the test program from the library
page 56 FINAL

ATLAS C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.2/1
list. (REQUIRED) 42

CT4 Class and function templates must not depend upon the context of the translation file instantiating them.
(REQUIRED) 42

4.1 General aspects of style (SG)

SG1 The public, protected and private sections of a class must be declared in that order. Within each
section, nested types (e.g. enum or class) must appear at the top. (REQUIRED) 43

SG2 Keep the ordering of methods in the header file and in the source files identical. (REQUIRED) . 43

SG3 Statements should not exceed 100 characters (excluding leading spaces). If possible, break long
statements up into multiple ones. (RECOMMENDED) 43

SG4 Limit line length to 120 character positions (including white space and expanded tabs). (REQUIRED)43

SG5 Include meaningful dummy argument names in function declarations. Any dummy argument names used
in function declarations must be the same as in the definition. (REQUIRED) 44

SG6 The code should be properly indented for readability reasons. (RECOMMENDED) 44

SG7 Do not use spaces in front of [], (), and to either side of . and ->, in references to functions
or arrays. (REQUIRED) 44

SG8 Keep the style of each file consistent within itself. (RECOMMENDED) 45

4.2 Comments (SC)

SC1 Use javadoc style comments BEFORE class/method/field declarations. Use "//" for comments in method
bodies. (RECOMMENDED) 45

SC2 All comments should be written in complete (short and expressive) English sentences. (RECOMMENDED)
45

SC3 In the header file, provide a comment describing the use of a declared function and attributes, if this is not
completely obvious from its name, also a comment describing what a method does (REQUIRED) 46

SC4 In the implementation file, above each method implementation, provide a comment describing what the
method does (if not obvious), and the preconditions and postconditions. (REQUIRED) . . . 46
FINAL page 57

ATLAS C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.2/1
page 58 FINAL

	Abstract
	Document Control Sheet
	Document Status Sheet
	Document Change Record
	Table of Contents
	1�� Introduction
	1.1�� Purpose
	1.2�� Authors
	1.3�� Evolution and updating responsibility
	1.3.1�� Motivations for the evolution of the document

	1.4�� Organization of this document and approach
	1.4.1�� Naming
	1.4.2�� Coding
	1.4.3�� Style
	1.4.4�� Item Numbering
	1.4.5�� Item Information

	1.5�� References
	1.6�� Definitions and Acronyms

	2�� Naming
	2.1�� Naming of files (NF)
	2.2�� Meaningful Names (NM)
	2.3�� Illegal or Non-recommended Naming (NI)
	2.4�� Naming Conventions (NC)

	3�� Coding
	3.1�� Organizing the Code (CO)
	3.2�� Control Flow (CF)
	3.3�� Object Life Cycle (CL)
	3.3.1�� Initialization of Variables and Constants
	3.3.2�� Constructor Initializer Lists
	3.3.3�� Copying of Objects

	3.4�� Conversions (CC)
	3.5�� The Class Interface (CI)
	3.5.1�� Inline Functions
	3.5.2�� Argument Passing and Return Values
	3.5.3�� const Correctness
	3.5.4�� Overloading and Default Arguments

	3.6�� new and delete (CN)
	3.7�� Static and Global Objects (CS)
	3.8�� Object-Oriented Programming (CB)
	3.9�� Assertions and error conditions (CE)
	3.10�� Error Handling (CH)
	3.11�� Parts of C++ to Avoid (CA)
	3.12�� Readability and maintainability (CR)
	3.13�� Portability (CP)
	3.14�� C++ Templates (CT)

	4�� Style
	4.1�� General aspects of style (SG)
	4.2�� Comments (SC)

	A�� Terminology
	B�� List of the items of the standard

