/* * hitStart - registers hits for Start counter * * This is a part of the hits package for the * HDGeant simulation program for Hall D. * * version 1.0 -Richard Jones July 16, 2001 * * Programmer's Notes: * ------------------- * 1) In applying the attenuation to light propagating down to the end * of the counters, there has to be some point where the attenuation * factor is 1. I chose it to be the midplane, so that in the middle * of the counters the attenuation factor is 1. * 2) In applying the propagation delay to light propagating down to the * end of the counters, there has to be some point where the timing * offset is 0. I chose it to be the midplane, so that for hits in * the middle of the counter the t values measure time-of-flight from * the t=0 of the event. */ #include #include #include #include #include #include #define ATTEN_LENGTH 150. #define C_EFFECTIVE 15. #define TWO_HIT_RESOL 25. #define MAX_HITS 100 #define THRESH_MEV 0.150 binTree_t* startCntrTree = 0; static int paddleCount = 0; static int pointCount = 0; /* register hits during tracking (from gustep) */ void hitStartCntr (float xin[4], float xout[4], float pin[5], float pout[5], float dEsum, int track, int stack, int history) { float x[3], t; float dx[3], dr; float dEdx; float xlocal[3]; float xvrtx[3]; x[0] = (xin[0] + xout[0])/2; x[1] = (xin[1] + xout[1])/2; x[2] = (xin[2] + xout[2])/2; t = (xin[3] + xout[3])/2 * 1e9; transformCoord(x,"global",xlocal,"local"); dx[0] = xin[0] - xout[0]; dx[1] = xin[1] - xout[1]; dx[2] = xin[2] - xout[2]; dr = sqrt(dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2]); if (dr > 1e-3) { dEdx = dEsum/dr; } else { dEdx = 0; } /* post the hit to the truth tree */ if (history == 0) { int mark = (1<<30) + pointCount; void** twig = getTwig(&startCntrTree, mark); if (*twig == 0) { s_StartCntr_t* stc = *twig = make_s_StartCntr(); s_StcTruthPoints_t* points = make_s_StcTruthPoints(1); stc->stcTruthPoints = points; points->in[0].primary = (stack == 0); points->in[0].track = track; points->in[0].t = t; points->in[0].z = x[2]; points->in[0].r = sqrt(x[0]*x[0]+x[1]*x[1]); points->in[0].phi = atan2(x[1],x[0]); points->in[0].dEdx = dEdx; points->mult = 1; pointCount++; } } /* post the hit to the hits tree, mark sector as hit */ if (dEsum > 0) { int nhit; s_StcHits_t* hits; int sector = getsector_(); float phim = atan2(xvrtx[1],xvrtx[0]); float dpath = xlocal[2]+(10.2-xlocal[0])*0.4; float tcorr = t + dpath/C_EFFECTIVE; float dEcorr = dEsum * exp(-dpath/ATTEN_LENGTH); int mark = sector; void** twig = getTwig(&startCntrTree, mark); if (*twig == 0) { s_StartCntr_t* stc = *twig = make_s_StartCntr(); s_StcPaddles_t* paddles = make_s_StcPaddles(1); paddles->mult = 1; paddles->in[0].sector = sector; paddles->in[0].stcHits = hits = make_s_StcHits(MAX_HITS); stc->stcPaddles = paddles; paddleCount++; } else { s_StartCntr_t* stc = *twig; hits = stc->stcPaddles->in[0].stcHits; } for (nhit = 0; nhit < hits->mult; nhit++) { if (fabs(hits->in[nhit].t - tcorr) < TWO_HIT_RESOL) { break; } } if (nhit < hits->mult) /* merge with former hit */ { hits->in[nhit].t = (hits->in[nhit].t * hits->in[nhit].dE + tcorr * dEcorr) / (hits->in[nhit].dE += dEcorr); } else if (nhit < MAX_HITS) /* create new hit */ { hits->in[nhit].t = tcorr ; hits->in[nhit].dE = dEcorr; hits->mult++; } else { fprintf(stderr,"HDGeant error in hitStart: "); fprintf(stderr,"max hit count %d exceeded, truncating!\n",MAX_HITS); exit(2); } } } /* entry point from fortran */ void hitstartcntr_(float* xin, float* xout, float* pin, float* pout, float* dEsum, int* track, int* stack, int* history) { hitStartCntr(xin,xout,pin,pout,*dEsum,*track,*stack,*history); } /* pick and package the hits for shipping */ s_StartCntr_t* pickStartCntr () { s_StartCntr_t* box; s_StartCntr_t* item; if ((paddleCount == 0) && (pointCount == 0)) { return HDDM_NULL; } box = make_s_StartCntr(); box->stcPaddles = make_s_StcPaddles(paddleCount); box->stcTruthPoints = make_s_StcTruthPoints(pointCount); while (item = (s_StartCntr_t*) pickTwig(&startCntrTree)) { s_StcPaddles_t* paddles = item->stcPaddles; int paddle; s_StcTruthPoints_t* points = item->stcTruthPoints; int point; for (paddle=0; paddle < paddles->mult; ++paddle) { int m = box->stcPaddles->mult; s_StcHits_t* hits = paddles->in[paddle].stcHits; /* compress out the hits below threshold */ int i,iok; for (iok=i=0; i < hits->mult; i++) { if (hits->in[i].dE >= THRESH_MEV/1e3) { if (iok < i) { hits->in[iok] = hits->in[i]; } ++iok; } } if (iok) { hits->mult = iok; box->stcPaddles->in[m] = paddles->in[paddle]; box->stcPaddles->mult++; } else if (hits != HDDM_NULL) { FREE(hits); } } if (paddles != HDDM_NULL) { FREE(paddles); } for (point=0; point < points->mult; ++point) { int m = box->stcTruthPoints->mult++; box->stcTruthPoints->in[m] = item->stcTruthPoints->in[point]; } if (points != HDDM_NULL) { FREE(points); } FREE(item); } paddleCount = pointCount = 0; if ((box->stcPaddles != HDDM_NULL) && (box->stcPaddles->mult == 0)) { FREE(box->stcPaddles); box->stcPaddles = HDDM_NULL; } if ((box->stcTruthPoints != HDDM_NULL) && (box->stcTruthPoints->mult == 0)) { FREE(box->stcTruthPoints); box->stcTruthPoints = HDDM_NULL; } if ((box->stcPaddles->mult == 0) && (box->stcTruthPoints->mult == 0)) { FREE(box); box = HDDM_NULL; } return box; }