#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; // The file tdiff_res.cc is created by the tdiff_check_tgraph.C macro #include "tdiff_res.cc" #include "tdiff.cc" #include "E_calibrate.cc" #include "Angle.h" #include "Geom.h" #include "StandardLabels.C" void GetPoints(TH2D *h, TGraphErrors* &gres, TGraph* &gmean); //------------------------------------ // Copied from JEventProcessor_bcal_timing.cc typedef struct{ int event; int layer; int sector; int fADC_up; int fADC_dn; float Etot; float geometric_mean; float tup; float tdn; float tup_corrected; float tdn_corrected; float theta_thrown; float E_thrown; }HIT_t; //------------------------------------ //----------------- // tdiff_res_vs_E_proton //----------------- void tdiff_res_vs_E_proton(void) { gStyle->SetStatY(0.90); gStyle->SetOptStat(2200); TColor::CreateColorWheel(); TFile *f = new TFile("hd_root.root"); f->cd(); TTree *tree = (TTree*)gROOT->FindObject("tree"); HIT_t hit; HIT_t *hitptr = &hit; TBranch *branch = tree->GetBranch("T"); branch->SetAddress(hitptr); TH2D *h = new TH2D("h", "", 200, 0.030, 2.0, 60, -5000.0, 5000.0); // Loop over all events and fill histogram. We do this // rather than TTree::Project since we need to call the // BCAL_tdiff_res for each entry int Nentries = branch->GetEntries(); double t_tot = 0.0; double A_tot = 0.0; double E_tot = 0.0; int last_event=1; for(int i=1; i<=Nentries; i++){ tree->GetEntry(i); // Fill histogram on event boundaries and reset for next event if(hit.event!=last_event){ t_tot /= A_tot; E_tot = BCAL_fADC2E(E_tot); // convert to GeV h->Fill(E_tot, t_tot); t_tot = 0.0; A_tot = 0.0; E_tot = 0.0; last_event = hit.event; } if(hit.layer<1 || hit.layer>MaxSummedLayers())continue; // if(hit.tup_corrected<-100)continue; if(hit.tdn_corrected<-100)continue; // Accumulate info for this event double geomn = hit.geometric_mean; double E = geomn; // convert to GeV just before filling histo above double weight = E; double tdiff_corrected = (hit.tup_corrected - hit.tdn_corrected)/2.0 - BCAL_tdiff(geomn, hit.layer); if(!IsOuter(hit.layer)){ t_tot += weight*1000.0*tdiff_corrected; A_tot += weight; } E_tot += E; } //h->FitSlicesY(); //TH1D *h_2 = (TH1D*)gROOT->FindObject("h_2"); TGraphErrors *gres; TGraph *gmean; GetPoints(h, gres, gmean); // Create a fit function TF1 *fun = new TF1("fun", "sqrt([0]*[0] + pow([1]/sqrt(x) ,2.0))"); fun->SetParameter(0, 10.0); fun->SetParameter(1, 50.0); fun->SetLineColor(kRed); fun->SetLineWidth(2); //g->Fit(fun, "", "", 0.01, 2.4); fun->SetLineColor(kRed); TFitResultPtr fitresultptr = gres->Fit(fun,"ES","", 0.0,2.0); double fitparm_covariance = 0.0; // save covariance between parameters if(fitresultptr==0){ TFitResult *fitresult = fitresultptr.Get(); if(fitresult){ fitparm_covariance = fitresult->CovMatrix(1,0); cout<<"Covariance(0,0) = "<CovMatrix(0,0)<SetTicks(); c1->SetGrid(); TH2D *axes = new TH2D("axes","", 100, 0.0, 2.0, 100, 0.0, 2000.0); axes->SetStats(0); axes->SetXTitle("Geometric mean (GeV)"); axes->SetYTitle("Energy weighted #Deltat/2 #sigma (ps)"); axes->Draw(); gres->Draw("Psame"); char str[256]; sprintf(str, "#sigma_{#Deltat/2} = #frac{(%4.1f#pm%4.1f) ps}{#sqrt{E}} #oplus (%4.1f#pm%4.1f) ps" , fun->GetParameter(1), fun->GetParError(1) , fun->GetParameter(0), fun->GetParError(0)); TLatex *lab = new TLatex(0.4, 1500, str); lab->SetTextSize(0.05); lab->Draw(); StandardLabels(axes, Scheme(), "", AngleStr("#theta_{proton}=")); c1->SaveAs("tdiff_res_vs_E_proton.png"); c1->SaveAs("tdiff_res_vs_E_proton.pdf"); // Write parameter to a file so they can be read in and used // to automatically generate the LaTeX table later ofstream ofs("tdiff_parms.dat"); ofs<GetParameter(1)<<" "<GetParError(1)<GetParameter(0)<<" "<GetParError(0)<ProjectionX("_px", 1); // Loop over (uneven) bins int Npoints = 0; vector x; vector y; vector y_mean; vector xerr; vector yerr; int Nbins = h->GetNbinsX(); for(int start_bin=1; start_bin<=Nbins; ){ // Find limits to give us min_entries entries int end_bin = start_bin; while(h_px->Integral(start_bin, end_bin)Integral(end_bin, Nbins)Integral()>=20){ // Fit to Gaussian h_py->Fit("gaus","0Q"); //c1->Update(); // Get fit results double mean = h_py->GetFunction("gaus")->GetParameter(1); double sigma = h_py->GetFunction("gaus")->GetParameter(2); double sigma_err = h_py->GetFunction("gaus")->GetParError(2); // Find average fADC value for hits in this bin range double fADC = 0.0; double norm = 0.0; for(int bin=start_bin; bin<=end_bin; bin++){ double weight = h_px->GetBinContent(bin); fADC += h_px->GetBinCenter(bin)*weight; norm += weight; } fADC /= norm; // Add floor term to error obtained from Gaussian fit double epsilon = 5.0; // ps sigma_err = sqrt(sigma_err*sigma_err + epsilon*epsilon); // Error on reconstructed energy is difficult to estimate here. // It is definitely worse than the final algorithm will yield. // The fact that the "reconstructed" energy extends out to 2.5GeV // when the generated data set only went to 2GeV says it is // considerably worse than 5.5%/sqrt(E). For lack of a better // idea, I use the RMS of the fADC values about the mean // in the current range. double fADC_rms = 0.0; double norm_rms = 0.0; for(int bin=start_bin; bin<=end_bin; bin++){ double weight = h_px->GetBinContent(bin); fADC_rms += pow(h_px->GetBinCenter(bin)-fADC, 2.0)*weight; norm_rms += weight; } fADC_rms /= norm_rms; fADC_rms = sqrt(fADC_rms); x.push_back(fADC); y.push_back(sigma); y_mean.push_back(mean); xerr.push_back(fADC_rms); yerr.push_back(sigma_err); Npoints++; } // Increment for next iteration start_bin=end_bin+1; } gres = new TGraphErrors(Npoints, &x[0], &y[0], &xerr[0], &yerr[0]); gres->SetMarkerColor(kOrange+3); gres->SetMarkerStyle(21); gres->SetMarkerSize(1.0); gres->SetLineColor(kOrange+3); gres->SetLineWidth(2); gmean = new TGraph(Npoints, &x[0], &y_mean[0]); gmean->SetMarkerColor(kRed); gmean->SetMarkerStyle(22); gmean->SetLineColor(kRed); }