// This will fit histograms from the tree in hd_root.root to // obtain a set of timewalk corrections functions. // // This is done by projecting the uncorrected times onto a // histogram in bins of fADC value. The maximum is then used to // fill a histo and fit it to a specific functional form and code is // generated to capture those fit results into a C++ accessible // format: timewalk_max.cc. #include #include using namespace std; #include #include #include #include #include #include #include #include #include "Geom.h" #include "Angle.h" #include "StandardLabels.C" void GetPoints(TH2D *h, TGraphErrors* &gres, TGraphErrors* &gmean); void timewalk_calibrate(void) { TFile *f = new TFile("hd_root.root"); f->cd(); // avoid compiler warnings when running with "+" TTree *tree = (TTree*)gROOT->FindObject("tree"); TCanvas *c1 = new TCanvas("c1"); c1->SetTicks(); c1->SetGrid(); TH2D *axes = new TH2D("axes","", 100, 0.0, 800.0, 100, Tmin()-5.0, Tmax()+15.0); axes->SetStats(0); axes->SetXTitle("fADC"); axes->SetYTitle("t (ns)"); TF1 *fun_up = new TF1("fun_up", "[0] + [1]/(pow(x,[2])+[3])", 0.0, 800.0); TF1 *fun_dn = new TF1("fun_dn", "[0] + [1]/(pow(x,[2])+[3])", 0.0, 800.0); fun_up->SetLineWidth(2); fun_dn->SetLineWidth(2); // Estimated values for tup and tdn double tup_est, tdn_est; GetTupTdn(tup_est, tdn_est); fun_up->SetLineColor(kBlue); fun_dn->SetLineColor(kRed); double parms_up[10+1][4]; double parms_dn[10+1][4]; // Open PDF file for plots c1->Print("timewalk.ps["); // Loop over layers int Nlayers=0; for(int ilayer=1; ilayer<=MaxSummedLayers() ; ilayer++, Nlayers++){ //for(int ilayer=2; ilayer<=2 ; ilayer++, Nlayers++){ // First, project onto a 2D histo TH2D *hup_2D = new TH2D("hup_2D","", 800, 40.0, 800.0, 600, 0.0, 60.0); TH2D *hdn_2D = new TH2D("hdn_2D","", 800, 40.0, 800.0, 600, 0.0, 60.0); char cut[256]; sprintf(cut, "layer==%d", ilayer); tree->Project("hup_2D", "tup:fADC_up", cut); tree->Project("hdn_2D", "tdn:fADC_dn", cut); // Create TGraphs from histos TGraphErrors *gres_up, *gmean_up; TGraphErrors *gres_dn, *gmean_dn; GetPoints(hup_2D, gres_up, gmean_up); GetPoints(hdn_2D, gres_dn, gmean_dn); gmean_up->SetLineColor(kCyan); gmean_dn->SetLineColor(kMagenta); gmean_up->SetMarkerColor(kCyan); gmean_dn->SetMarkerColor(kMagenta); gmean_up->SetLineWidth(2); gmean_dn->SetLineWidth(2); char title[256]; sprintf(title, "Timewalk for layer %d", ilayer); axes->SetTitle(title); cout<<"tup_est="<GetParameter(ipar); gmean_dn->Fit(fun_dn,"","",xmin_dn, 800.0); for(int ipar=0; ipar<=3; ipar++)parms_dn[ilayer][ipar] = fun_dn->GetParameter(ipar); axes->Draw(); tree->Draw("tup:fADC_up", cut, "same"); tree->Draw("tdn:fADC_dn", cut, "same"); gmean_up->Draw("Psame"); gmean_dn->Draw("Psame"); TLegend *leg = new TLegend(0.6, 0.70, 0.8, 0.85); leg->SetFillColor(kWhite); leg->AddEntry(fun_up, "upstream"); leg->AddEntry(fun_dn, "downstream"); leg->Draw(); StandardLabels(axes, Scheme(), AngleStr("#theta_{#gamma}=")); c1->Update(); c1->Print("timewalk.ps"); char fname[256]; sprintf(fname, "timewalk_calibrate_layer%0d.png", ilayer); c1->SaveAs(fname); } // Close PDF file c1->Print("timewalk.ps]"); // Write parameters out in form of C++ file char cppfname[256]; sprintf(cppfname, "timewalk_%s.h", Scheme()); ofstream pout(cppfname); pout<"<NLAYERS_BCAL ? NLAYERS_BCAL:layer;"<NLAYERS_BCAL ? NLAYERS_BCAL:layer;"<ProjectionX("_px", 1); // Loop over (uneven) bins int Npoints = 0; vector x; vector y; vector y_mean; vector xerr; vector yerr; vector y_mean_err; int Nbins = h->GetNbinsX(); for(int start_bin=1; start_bin<=Nbins; ){ // Find limits to give us min_entries entries int end_bin = start_bin; while(h_px->Integral(start_bin, end_bin)Integral(end_bin, Nbins)Integral()>=5){ // Fit to Gaussian h_py->Fit("gaus","0Q"); //c1->Update(); // Get fit results //double mean = h_py->GetFunction("gaus")->GetParameter(1); double mean = h_py->GetMean(); double sigma = h_py->GetFunction("gaus")->GetParameter(2); //double mean_err = h_py->GetFunction("gaus")->GetParError(1); double mean_err = h_py->GetRMS(); double sigma_err = h_py->GetFunction("gaus")->GetParError(2); // Find average fADC value for hits in this bin range double fADC = 0.0; double norm = 0.0; for(int bin=start_bin; bin<=end_bin; bin++){ double weight = h_px->GetBinContent(bin); fADC += h_px->GetBinCenter(bin)*weight; norm += weight; } fADC /= norm; // Add floor term to error obtained from Gaussian fit double epsilon = 0.200; // ns mean_err = sqrt(mean_err*mean_err + epsilon*epsilon); sigma_err = sqrt(sigma_err*sigma_err + epsilon*epsilon); // Estimate error in x double fADC_rms = 0.0; double norm_rms = 0.0; for(int bin=start_bin; bin<=end_bin; bin++){ double weight = h_px->GetBinContent(bin); fADC_rms += pow(h_px->GetBinCenter(bin)-fADC, 2.0)*weight; norm_rms += weight; } fADC_rms /= norm_rms; fADC_rms = sqrt(fADC_rms); x.push_back(fADC); y.push_back(sigma); y_mean.push_back(mean); xerr.push_back(fADC_rms); yerr.push_back(sigma_err); y_mean_err.push_back(mean_err); Npoints++; } // Increment for next iteration start_bin=end_bin+1; } gres = new TGraphErrors(Npoints, &x[0], &y[0], &xerr[0], &yerr[0]); gres->SetMarkerColor(kMagenta); gres->SetLineColor(kMagenta); gres->SetLineWidth(2); gmean = new TGraphErrors(Npoints, &x[0], &y_mean[0], &xerr[0], &y_mean_err[0]); gmean->SetMarkerColor(kRed); gmean->SetMarkerStyle(23); gmean->SetLineColor(kRed); }