void trainBDTG_p(void) { TMVA::Tools::Instance(); // auto inputFile1 = TFile::Open("ML_track_input_042513_125.root"); // auto inputFile2 = TFile::Open("ML_track_input_042513_126.root"); auto outputFile = TFile::Open("TMVAOutputBDT_p.root", "RECREATE"); TMVA::Factory factory("TMVARegression", outputFile, "!V:!Silent:Color:DrawProgressBar:AnalysisType=Regression"); TMVA::DataLoader loader("dataset"); loader.AddVariable("L01"); loader.AddVariable("L02"); loader.AddVariable("L03"); loader.AddVariable("L04"); loader.AddVariable("L05"); loader.AddVariable("L06"); loader.AddVariable("L07"); loader.AddVariable("L08"); loader.AddVariable("L09"); loader.AddVariable("L10"); loader.AddVariable("L11"); loader.AddVariable("L12"); loader.AddVariable("L13"); loader.AddVariable("L14"); loader.AddVariable("L15"); loader.AddVariable("L16"); loader.AddVariable("L17"); loader.AddVariable("L18"); loader.AddVariable("L19"); loader.AddVariable("L20"); loader.AddVariable("L21"); loader.AddVariable("L22"); loader.AddVariable("L23"); loader.AddVariable("L24"); loader.AddTarget("target := p"); auto chain = new TChain("t"); chain->Add("/cache/halld/home/davidl/Studies/2018/2018.11.09.ML_tracking/ver01/hd_root_*.root"); // chain->Add("ML_track_input_042513_125.root"); // chain->Add("ML_track_input_042513_126.root"); // TTree *tree1 = (TTree*)inputFile->GetObject("t"); // TTree *tree1 = (TTree*)inputFile->GetObject("t"); TCut mycuts("p>0.200 && p<5.0"); // Use with TMVA TCut mycutst("target>0.200 && target<5.0"); // Use with plotting results loader.AddRegressionTree( chain, 1.0 ); loader.PrepareTrainingAndTestTree( mycuts, "nTrain_Regression=1000000:nTest_Regression=500000:SplitMode=Random:NormMode=NumEvents:!V"); factory.BookMethod( &loader, TMVA::Types::kBDT, "BDTG", TString("!H:!V:Ntrees=1024::BoostType=Grad:Shrinkage=0.1:ncuts=20:MaxDepth=32:")+ TString("RegressionLossFunctionBDTG=AbsoluteDeviation")); factory.TrainAllMethods(); factory.TestAllMethods(); factory.EvaluateAllMethods(); outputFile->Close(); }