void test_random_full(void) { // // plot the number of fits to a cdc segment that result in prob > prob_cut (currently set to 0.01). // #include #include gROOT->Reset(); //TTree *Bfield = (TTree *) gROOT->FindObject("Bfield"); gStyle->SetPalette(1,0); gStyle->SetOptStat(kTRUE); gStyle->SetOptFit(kTRUE); // gStyle->SetOptFit(1111); gStyle->SetPadRightMargin(0.15); gStyle->SetPadLeftMargin(0.15); gStyle->SetPadBottomMargin(0.15); gStyle->SetFillColor(0); // char string[256]; char filename[80]; Int_t j,jj; #define npts 100000; // define histograms nbins=100; TH1F *uniform = new TH1F("uniform","uniform distribution",nbins,0,1); TH1F *decay = new TH1F("decay","exponential distribution",nbins,0,40); TH1F *bell = new TH1F("bell","bell distribution",nbins,-10,10); TH1F *counts= new TH1F("counts","Poisson distribution",nbins/10,0,10); // TCanvas *c1 = new TCanvas("c1","c1 Test random",200,10,700,700); c1->SetBorderMode(0); c1->SetFillColor(0); // c1->SetGridx(); // c1->SetGridy(); // c1->SetLogy(); Double_t xmin=-1; Double_t xmax=1; // plot pulse function Double_t tau=4.; // unis of 1/x Double_t mean=3; // unis of 1/x Double_t sigma=2; // units of x Double_t Pmean=3; // Poisson mean TRandom1 *r = new TRandom1(); for (j=0;jUniform(); Double_t y = r->Exp(tau); Double_t z = r->Gaus(mean,sigma); // Int_t n = r->Gaus(Pmean); Int_t n = r->Poisson(Pmean); uniform->Fill(x); decay->Fill(y); bell->Fill(z); counts->Fill((Double_t) n); } c1->Divide(2,2); c1->cd(1); c1_1->SetBorderMode(0); c1_1->SetFillColor(0);; uniform->GetYaxis()->SetRangeUser(0,2*npts/nbins); uniform->Fit("pol1"); uniform->Draw(); c1->cd(2); c1_2->SetBorderMode(0); c1_2->SetFillColor(0); decay->Fit("expo"); decay->Draw(); c1->cd(3); c1_3->SetBorderMode(0); c1_3->SetFillColor(0); bell->Fit("gaus"); bell->Draw(); c1->cd(4); c1_3->SetBorderMode(0); c1_3->SetFillColor(0); counts->Fit("gaus"); counts->Draw(); // TCanvas *c2 = new TCanvas("c2","c2 Test random",200,10,700,700); c2->SetBorderMode(0); c2->SetFillColor(0); // c2->SetGridx(); // c2->SetGridy(); // c2->SetLogy(); // define input masses and kinematics Double_t mt = 0.938272; // target units are GeV Double_t mb = 0; // beam Double_t m1 = 0.938272; // product 1 Double_t m2 = 0.497614; // product 2 Double_t m3 = 0.497614; // product 3 Double_t Eb = 3; // beam energy Double_t s = mt*mt + mb*mb + 2*Eb*mt; // total c.m. energy squared xmin = (m1+m2)*(m1+m2); xmax = (sqrt(s)-m3)*(sqrt(s)-m3); sprintf (string,"s=%f\nProduct 1 mass=%f\nProduct 2 mass=%f\nProduct 3 mass=%f\n",s,m1,m2,m3); printf ("test_random_full: %s",string); TF1 *Pm12 = new TF1("Pm12",Pm12,sqrt(xmin),sqrt(xmax),5); Pm12->SetParameters(s,m1,m2,m3,1); Double_t ymin = 0; Double_t ymax = 300; // Pm12->GetYaxis()->SetRangeUser(ymin,ymax); Pm12->DrawCopy(); // TCanvas *c3 = new TCanvas("c3","c3 Test random",200,10,700,700); c3->SetBorderMode(0); c3->SetFillColor(0); //c3->SetGridx(); //c3->SetGridy(); //c3->SetLogy(); TH1F *m12 = new TH1F("m12","m12",nbins,sqrt(xmin),sqrt(xmax)); for (j=0;jGetRandom(); m12->Fill(rm12); } Pm12->FixParameter(0,s); Pm12->FixParameter(1,m1); Pm12->FixParameter(2,m2); Pm12->FixParameter(3,m3); m12->Fit("Pm12","","",sqrt(xmin),sqrt(xmax)); m12->SetTitle(""); // m12->GetXaxis()->SetRangeUser(1.0,2.5); // m12->GetYaxis()->SetRangeUser(ymin,ymax); m12->GetXaxis()->SetTitleSize(0.05); m12->GetYaxis()->SetTitleSize(0.05); m12->GetYaxis()->SetTitleOffset(1.5); m12->GetYaxis()->SetTitle("events"); m12->GetXaxis()->SetTitle("m_{pK}"); m12->GetXaxis()->SetNdivisions(505); m12->SetMarkerColor(2); m12->SetMarkerStyle(21); m12->Draw(); } Double_t Pm12 (Double_t *x, Double_t *par) { // generate phase space distribution in m12s // See Hagedorn Eq. 7-43 char string[256]; Double_t mstars=par[0]; Double_t m1=par[1]; Double_t m2=par[2]; Double_t m3=par[3]; Double_t norm=par[4]; Double_t m12=x[0]; Double_t mstar=sqrt(mstars); sprintf(string,"m1=%f, m2=%f, m3=%f, m12=%f, mstar=%f\n",m1,m2,m3,m12,mstar); // printf ("Pm12: %s",string); Double_t xin[1]; Double_t parin[2]; xin[0] = mstar; parin[0] = m12; parin[1] = m3; Double_t pm12 = sqrt(p2mstar(xin,parin)); xin[0] = m12; parin[0] = m1; parin[1] = m2; Double_t pmj = sqrt(p2mstar(xin,parin)); sprintf(string,"pm12=%f, pmj=%f\n",pm12,pmj); // printf ("Pm12: %s",string); // Double_t distr = pm12 * pmj / m12; // distribution in m12s Double_t distr = pm12 * pmj; // distribution in m12 return norm*distr; } Double_t p2mstar (Double_t *x, Double_t *par) { // See Hagedorn Eq. 7-43 Double_t m1=par[0]; Double_t m2=par[1]; Double_t mstar=x[0]; Double_t mstars=mstar*mstar; Double_t m1s=m1*m1; Double_t m2s=m2*m2; char string[256]; if (mstar < m1+m2) { // sprintf (string,"mstar=%f, m1=%f, m2=%f\n",mstar,m1,m2); // printf ("string=%s",string); return -1; } Double_t p2 = (mstars-(m1+m2)*(m1+m2))*(mstars - (m1-m2)*(m1-m2))/(4*mstars); sprintf (string,"p2mstar: m1=%f, m2=%f, mstar=%f, p2=%f\n",m1,m2,mstar, p2); // printf ("p2mstar: %s",string); return p2; }