Quadrupole Magnet Problem Harmonic analysis using 11 points at Rint = 1.86 cm between 0 and 45 degrees shows relatively poor field purity (i.e., large values of higher-order coefficients). [Originally appeared in 1987 Reference Manual B.12.1] ; Copyright 1987, by the University of California. ; Unauthorized commercial use is prohibited. ® kprob=0, ; Poisson or Pandira problem mode=0 ; Some materials have variable permeability mat=2, ; First region is material iron dx=.08, ; Mesh interval rx=2., ; X mesh interval multiplier at line regions ry=2.4, ; Y mesh interval multiplier at line regions yminf=0,ymaxf=0 ; Fixed Y for field interpolation xminf=0,xmaxf=4.5 ; X range for field interpolation ; Define X line regions: xreg1=5, xreg2=14.5, xreg3=16.5, ; Define Y line regions: yreg1=3.75, yreg2=6.8, yreg3=7.5, ; The next 6 terms refer to the harmonic analysis: ktype=4, ; Quadrupole symmetry nterm=5, ; Number of coefficients nptc=11, ; Number of arc points for interpolation rint=1.86, ; Radius of the arc for interpolation angle=45, ; Angular extent of arc (default start = 0) rnorm=1.86 & ; Aperture radius for normalization &po x=0.0,y=0.0 & &po r=19.1883,theta=0.0 & &po x=19.9,y=1.4 & &po x=22.4421,y=1.905 & &po nt=2,r=22.5228,theta=45.0 & &po x=0.0,y=0.0 & ® mat=1 & &po x=0.0,y=0.0 & &po r=14.25,theta=0.0 & &po nt=2,x=12.59852,y=6.65882 & &po x=9.5,y=3.5603 & &po x=7.02870,y=2.47058 & &po x=4.28368,y=0.99522 & &po nt=3,r=2.92,x=2.0647518,y=2.0647518 & &po x=0.0,y=0.0 & ® cur=9400.0 & &po x=11.86,y=5.6 & &po x=7.8,y=1.6 & &po x=7.15,y=2.3 & &po x=5.82,y=1.0 & &po x=6.48,y=0.32 & &po x=7.15,y=1.0 & &po x=7.85,y=0.32 & &po x=8.5,y=1.0 & &po x=9.18,y=0.32 & &po x=13.18,y=4.14 & &po x=11.86,y=5.6 & ® cur=0.0,ibound=0 & ! Dirichlet boundary condition on this path &po x=0.0,y=0.0 & &po r=22.5228,theta=45.0 & &po nt=2,x=22.4421,y=1.905 & &po x=19.9,y=1.4 & &po x=19.1883,y=0.0 &