Vector potential problem Magnetic shielding produced by thin, highly permeable sheet Geometry has very large changes in triangle size near the metal. [Originally appeared in 1987 User's Manual 10.7] ; Copyright 1987, by the University of California. ; Unauthorized commercial use is prohibited. ® kprob=0, ; Poisson or Pandira problem mode=-1, ; Use fixed but finite permeability fixgam=0.00005, ; Reluctivity nbslo=0, ; Dirichlet boundary condition on lower edge nbsup=0, ; Dirichlet boundary condition on upper edge nbslf=1, ; Neumann boundary condition on left edge nbsrt=1, ; Neumann boundary condition on right edge ; Define X (physical) and K (logical) line regions: xreg1=175.2,kreg1=36, xreg2=175.4,kreg2=40, kmax=86 ; Logical coordinate for XMAX ; Define Y (physical) and L (logical) line regions: yreg1=129.5,lreg1=26, yreg2=129.7,lreg2=30, lmax=76 & ; Logical coordinate for YMAX &po x=0.0,y=0.0 & ; Rectangular box &po x=400.4,y=0.0 & &po x=400.4,y=354.7 & &po x=0.0,y=354.7 & &po x=0.0,y=0.0 & ® mat=2 & ; Thin permeable metal box &po x=175.2,y=0.0 & &po x=175.4,y=0.0 & &po x=175.4,y=129.7 & &po x=0.0,y=129.7 & &po x=0.0,y=129.5 & &po x=175.2,y=129.5 & &po x=175.2,y=0.0 & ® mat=1,cur=10.0,ibound=-1 & ; Current sheet along lower edge &po x=0.0,y=0.0 & &po x=400.4,y=0.0 & ® mat=1,cur=188.0,ibound=-1 & ; Current sheet along upper edge &po x=0.0,y=354.7 & &po x=400.4,y=354.7 &