\relax \citation{LASSreport} \citation{short_cover} dcontentsline\contentsline \gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global \let \oldnewlabel\newlabel \gdef \newlabel#1#2{\newlabelxx{#1}#2} \gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\let \contentsline\oldcontentsline \let \newlabel\oldnewlabel} \else \global \let \hyper@last\relax \fi \citation{LASSreport} \citation{short_cover} \@writefile{toc}{\contentsline {section}{\numberline {1}Background}{1}{section.1}} \@writefile{brf}{\backcite{LASSreport}{{1}{1}{section.1}}} \@writefile{brf}{\backcite{short_cover}{{1}{1}{section.1}}} \@writefile{toc}{\contentsline {section}{\numberline {2}Scope}{1}{section.2}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Cross sectional view of the solenoidal magnet and Hall D detector. The location of detectors relative to the magnet is shown. Included are the yoke steel and a concept for a single coil with increased number of Amp-turns at the ends, which provides a relatively uniform magnetic field in the tracking region. The color ramp is the magnetic field magnitude in Tesla. }}{2}{figure.1}} \newlabel{fig:MagnetDetector}{{1}{2}{Background\relax }{figure.1}{}} \@writefile{toc}{\contentsline {section}{\numberline {3}Magnetic field}{2}{section.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Tracking volume}{2}{subsection.3.1}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The allowed range of $B_z(z,r=0)$ as a function of z is shown in blue. The curve in red shows the field for the LASS magnet, which indicates the preference of the experiment. }}{3}{figure.2}} \newlabel{fig:Bz_vs_z_beamline}{{2}{3}{Fringe field\relax }{figure.2}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Fringe field}{3}{subsection.3.2}} \@writefile{toc}{\contentsline {section}{\numberline {4}Interfaces}{3}{section.4}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Limits of components of the magnetic field. The limits on the radial dependence are only specified in the tracking volume. For z$\ge $ 600 cm and r$\ge $ 10 cm, the fringe field must be kept below 150 G. }}{4}{table.1}} \newlabel{tab:tracking_field_specs}{{1}{4}{Fringe field\relax }{table.1}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Maximum allowed fractional difference of $[B_z(r) - B_z(0)]/B_z(0)$ at small and large radial distances from the center within the tracking volume. }}{5}{figure.3}} \newlabel{fig:dBz_rel_vs_z_20100701_03}{{3}{5}{Fringe field\relax }{figure.3}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Mechanical}{5}{subsection.4.1}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Maximum allowed fractional difference of $[B_r(r) - B_r(0)]/B_z(0)$ at small and large radial distances from the center within the tracking volume. }}{6}{figure.4}} \newlabel{fig:dBr_rel_vs_z_20100701_03_x2}{{4}{6}{Fringe field\relax }{figure.4}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Cryogenics}{6}{subsection.4.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Power supply}{6}{subsection.4.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Magnet controls}{6}{subsection.4.4}} \bibstyle{unsrt} \bibdata{solenoid_replacement} \bibcite{LASSreport}{1} \bibcite{short_cover}{2} \newlabel{app:conductor}{{4.5}{7}{Conductor \label {app:conductor}\relax }{subsection.4.5}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Conductor }{7}{subsection.4.5}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces a) Superconductor available from JLab for potential use in the solenoid. b) Concept for composite conductor with the superconductor soldered into a copper channel substrate and insulated; typical dimensions are indicated. }}{7}{figure.5}} \newlabel{fig:ssc_cable}{{5}{7}{Conductor \label {app:conductor}\relax }{figure.5}{}}