Hall D Offline Software Performance and Status

12 GeV Software Review III February 10, 2015 Mark Ito

High-Level Software Packages

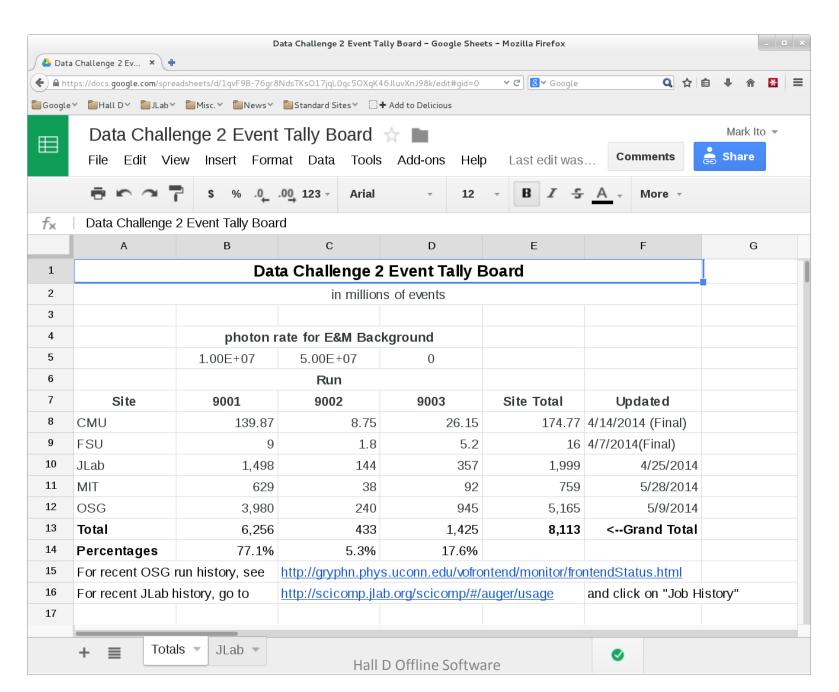
Function	Package	"Locally" Grown?
Raw Data Format	EVIO	yes
Offline Data Format	HDDM (compressed XML, REST a variant)	yes
Geometry Specification	HDDS (an XML)	yes
Data Acquisition Framework	CODA	yes
Simulation Engine	GEANT 3	no
Event-Based Processing Framework	JANA	yes
Event Simulation and Event Reconstruction	sim-recon (sim: GEANT 3, recon: JANA)	yes
High-Level Event Analysis	Analysis Library (part of sim-recon)	yes
Histogramming, Fitting, etc.	ROOT	no
Amplitude Analysis (PWA)	AmpTools	yes

Low-Level Software Packages

Function	Package		
XML Parsing	Xerces-C		
Source Code Management	Subversion		
Build System	SCons (some GNU Make)		
Scripting	Python (some legacy Perl)		
Database	MySQL/MariaDB and SQLite		
Web Authoring	MediaWiki (mostly)		
Data Transfer (WAN)	SRM, Globus Online		

Computing Performance Example

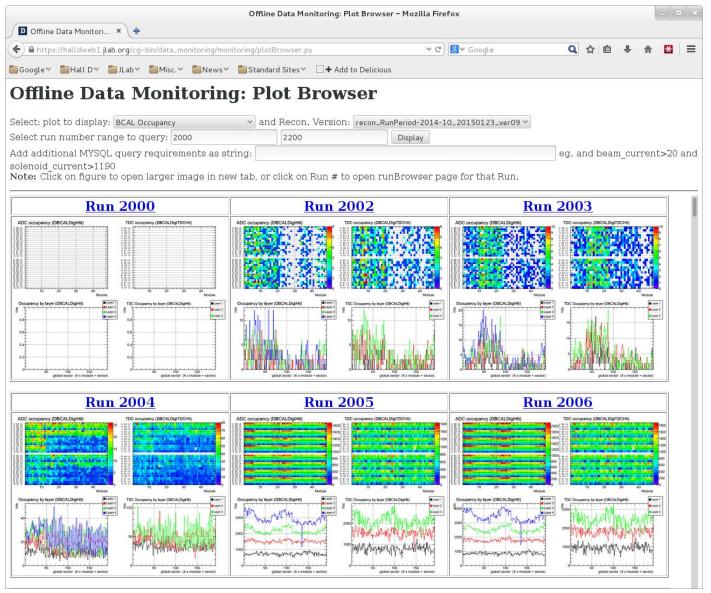
Computing task times: assume a 10,000 core Haswell farm.

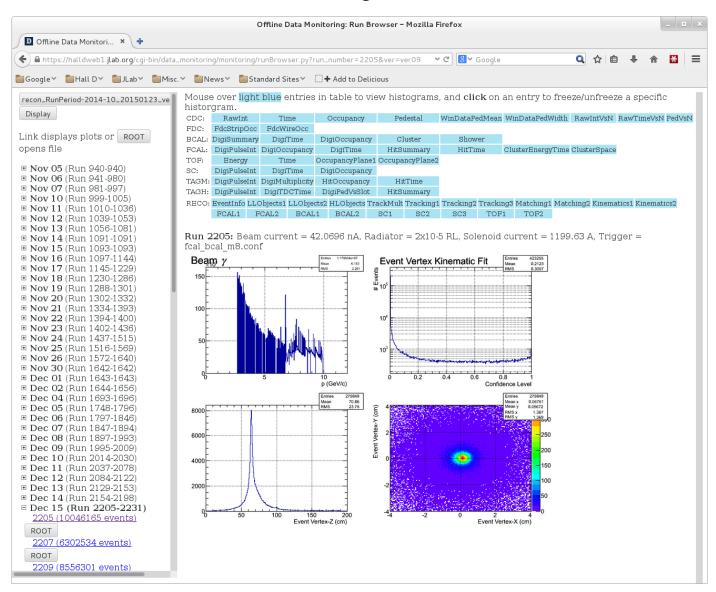

Fiscal Year	2015	2016	2017	2018	2019
Weeks of running	2	16	25	18	22
Trigger Rate (kHz)	2	20	20	20	20
Number of events (billions)	1.2	97	151	109	133
Reconstruction time (days)	0.06	5.1	8.0	5.7	7.0
Recon.+Sim. Time (days)					
	0.6	50.9	79.5	57.2	70.0
Total data to tape (PB)					
	0.05	4.0	6.3	4.5	5.6

Computing Requirements Discussion

- Number of cores needed reduced by a factor of 3 with new Haswell chip relative to assumption of last estimate.
- Running time per year has decreased
 - Peak of 25 weeks in FY17 vs. 35 weeks in last estimate.
- Simulated data creation time has gone up factor of 7 relative to reconstruction since last estimate.
 - Original estimate suspect
 - Experimental resolution inclusion: much slower now.
 - Improvement likely possible, unimproved number used.
- Commissioning data: event reconstruction rate 50% better than that on simulated data, but...
 - "junk" events not accounted for yet (event fraction, recon. rate)
 - Beam-spectrum/trigger not realistic (different center-of-mass energy)
 - Code base slightly different (for commissioning geometry, recent improvements)

Data Challenges (DCs)


- DC1 December 2012/ January 2013
 - 5 billion Events OSG, JLab, CMU
 - 1200 Concurrent Jobs at Jlab
 - Data produced used to support proposal for GlueX Phase IV running
- DC2 March/April 2014
 - 10 billion events with EM backgrounds included OSG, JLab, MIT, CMU, FSU
 - 4500 Concurrent Jobs at JLab
 - 11,000 Concurrent Jobs on the OSG
 - Well under 0.1% failure rate
- DC3 January/February 2015
 - Read data in raw-event format (EVIO) from tape and produce DST format (REST) files.
 - JLab only
 - Test throughput from Tape Library
 - Run Multi-threaded jobs


Offline Monitoring

- Weekly reconstruction pass through data
 - All data as of Friday afternoon
 - Online monitoring plots reproduced
 - Full reconstruction with updated code and constants
 - Skims of raw events done for calibration
 - DST data produced (REST format)
- Web site for browsing results
- REST data good enough to observe multi-particle final states
- Continuing on a bi-weekly schedule
- Paul Mattione (CMU), Kei Moriya (ASU), Justin Stevens (MIT), Sean Dobbs (NU)

Plots for a selected range of runs

Plots for a given run

Quantities as a function of run number

Calibration Working Group

- Bi-weekly meetings
 - chaired by Sean Dobbs of Northwestern
- Preliminary list of constants compiled in advance of run, used to guide activity
- Calibration procedures still being developed
- Substantial progress:
 - Basic timing offsets
 - Global energy scale for calorimeters determined
- All collaborating institutions involved.

Calibration Database Experience

- Fully integrated into reconstruction
- Near-complete migration of constants into database
- All detector groups making contributions (no known rogue systems)
- SQLite form of database as alternate to MySQL/MariaDB
 - Complete history and versioning support
 - Solves:
 - Distribution (remote sites, network-challenged computing)
 - Server contention from farm usage
 - Drawback: no automated back-annotation

Data Distribution

- Used OSG SRM to archive DC2 OSG results to JLab Tape Library
- Raw data shipped to CMU using Globus Online (raw data)
- Distribute REST data to outside institutions

Event-Based Data Management

- Raw data stays on JLab Tape Library
- Reconstructed REST-formatted data compact
 - Fall 2014 REST data only 113 GB total
 - Keep as much as possible disk-resident at JLab
 - Distribute most (all?) to collaborating institutions
- Data Catalog/Tracker needs development
 - Existing package?
 - Develop one?
 - Dependence on details of how data distributed

Online Conditions Database

- Database to store online run conditions, e. g., magnet current settings, configuration files, etc.
- Two were deployed
 - One looks great (API, modern web interface)
 - One was useful (hand work required, HTML-base web interface, CSS-free)
 - Effort underway to consolidate and expand.

Things To Do

- Real data exposed areas requiring further work:
 - Online Conditions Database
 - Data Catalog
 - Version Management
 - Made branch to deal with non-standard detector configuration
 - branch-to-trunk merge problematic
- Geant4: need to pick up the pace of development
- Still need profiling discipline!
 - Simulation speed has decayed
- Code review system needs design and implementation
 - Size of collaboration makes this a challenge
- Never-ending data challenge never got started

Summary

- Software performed all critical tasks needed to support detector commissioning and to see physics signals.
- The collaboration feels that we reached a number of milestones that we did not expect to see until the April 2015 run.
- Many basic tasks lie ahead: calibrations, monitoring, reconstruction Q/A.
- Software infrastructure to support these activities largely in place.