#include "DSelector_d0lc_misslc_lambda.h" void DSelector_d0lc_misslc_lambda::Init(TTree *locTree) { // The Init() function is called when the selector needs to initialize a new tree or chain. // Typically here the branch addresses and branch pointers of the tree will be set. // Init() will be called many times when running on PROOF (once per file to be processed). //SET OUTPUT FILE NAME //can be overriden by user in PROOF dOutputFileName = "d0lc_misslc_lambda.root"; //"" for none dOutputTreeFileName = ""; //"" for none //DO THIS NEXT //Because this function gets called for each TTree in the TChain, we must be careful: //We need to re-initialize the tree interface & branch wrappers, but don't want to recreate histograms bool locInitializedPriorFlag = dInitializedFlag; //save whether have been initialized previously DSelector::Init(locTree); //This must be called to initialize wrappers for each new TTree //gDirectory now points to the output file with name dOutputFileName (if any) if(locInitializedPriorFlag) return; //have already created histograms, etc. below: exit //THEN THIS Get_ComboWrappers(); dPreviousRunNumber = 0; /*********************************** EXAMPLE USER INITIALIZATION: ANALYSIS ACTIONS **********************************/ //ANALYSIS ACTIONS: //Executed in order if added to dAnalysisActions //false/true below: use measured/kinfit data //PID dAnalysisActions.push_back(new DHistogramAction_ParticleID(dComboWrapper, false)); //below: value: +/- N ns, Unknown: All PIDs, SYS_NULL: all timing systems //dAnalysisActions.push_back(new DCutAction_PIDDeltaT(dComboWrapper, false, 0.5, KPlus, SYS_BCAL)); //MASSES //dAnalysisActions.push_back(new DHistogramAction_InvariantMass(dComboWrapper, false, Lambda, 1000, 1.0, 1.2, "Lambda")); //dAnalysisActions.push_back(new DHistogramAction_MissingMassSquared(dComboWrapper, false, 1000, -0.1, 0.1)); //KINFIT RESULTS dAnalysisActions.push_back(new DHistogramAction_KinFitResults(dComboWrapper)); //CUT MISSING MASS //dAnalysisActions.push_back(new DCutAction_MissingMassSquared(dComboWrapper, false, -0.03, 0.02)); //BEAM ENERGY dAnalysisActions.push_back(new DHistogramAction_BeamEnergy(dComboWrapper, false)); //dAnalysisActions.push_back(new DCutAction_BeamEnergy(dComboWrapper, false, 8.4, 9.05)); //KINEMATICS dAnalysisActions.push_back(new DHistogramAction_ParticleComboKinematics(dComboWrapper, false)); //INITIALIZE ACTIONS //If you create any actions that you want to run manually (i.e. don't add to dAnalysisActions), be sure to initialize them here as well Initialize_Actions(); /******************************** EXAMPLE USER INITIALIZATION: STAND-ALONE HISTOGRAMS *******************************/ //EXAMPLE MANUAL HISTOGRAMS: dHist_MissingMassSquared = new TH1I("MissingMassSquared", ";Missing Mass Squared (GeV/c^{2})^{2}", 600, -0.06, 0.06); dHist_BeamEnergy = new TH1I("BeamEnergy", ";Beam Energy (GeV)", 600, 0.0, 12.0); /***************************************** ADVANCED: CHOOSE BRANCHES TO READ ****************************************/ //TO SAVE PROCESSING TIME //If you know you don't need all of the branches/data, but just a subset of it, you can speed things up //By default, for each event, the data is retrieved for all branches //If you know you only need data for some branches, you can skip grabbing data from the branches you don't need //Do this by doing something similar to the commented code below //dTreeInterface->Clear_GetEntryBranches(); //now get none //dTreeInterface->Register_GetEntryBranch("Proton__P4"); //manually set the branches you want } Bool_t DSelector_d0lc_misslc_lambda::Process(Long64_t locEntry) { // The Process() function is called for each entry in the tree. The entry argument // specifies which entry in the currently loaded tree is to be processed. // // This function should contain the "body" of the analysis. It can contain // simple or elaborate selection criteria, run algorithms on the data // of the event and typically fill histograms. // // The processing can be stopped by calling Abort(). // Use fStatus to set the return value of TTree::Process(). // The return value is currently not used. //CALL THIS FIRST DSelector::Process(locEntry); //Gets the data from the tree for the entry //cout << "RUN " << Get_RunNumber() << ", EVENT " << Get_EventNumber() << endl; /******************************************** GET POLARIZATION ORIENTATION ******************************************/ //Only if the run number changes //RCDB environment must be setup in order for this to work! (Will return false otherwise) UInt_t locRunNumber = Get_RunNumber(); if(locRunNumber != dPreviousRunNumber) { dIsPolarizedFlag = dAnalysisUtilities.Get_IsPolarizedBeam(locRunNumber, dIsPARAFlag); dPreviousRunNumber = locRunNumber; } /********************************************* SETUP UNIQUENESS TRACKING ********************************************/ //ANALYSIS ACTIONS: Reset uniqueness tracking for each action //For any actions that you are executing manually, be sure to call Reset_NewEvent() on them here Reset_Actions_NewEvent(); //PREVENT-DOUBLE COUNTING WHEN HISTOGRAMMING //Sometimes, some content is the exact same between one combo and the next //e.g. maybe two combos have different beam particles, but the same data for the final-state //When histogramming, you don't want to double-count when this happens: artificially inflates your signal (or background) //So, for each quantity you histogram, keep track of what particles you used (for a given combo) //Then for each combo, just compare to what you used before, and make sure it's unique //EXAMPLE 1: Particle-specific info: set locUsedSoFar_BeamEnergy; //Int_t: Unique ID for beam particles. set: easy to use, fast to search //EXAMPLE 2: Combo-specific info: //In general: Could have multiple particles with the same PID: Use a set of Int_t's //In general: Multiple PIDs, so multiple sets: Contain within a map //Multiple combos: Contain maps within a set (easier, faster to search) set > > locUsedSoFar_MissingMass; //INSERT USER ANALYSIS UNIQUENESS TRACKING HERE /************************************************* LOOP OVER COMBOS *************************************************/ //Loop over combos for(UInt_t loc_i = 0; loc_i < Get_NumCombos(); ++loc_i) { //Set branch array indices for combo and all combo particles dComboWrapper->Set_ComboIndex(loc_i); // Is used to indicate when combos have been cut if(dComboWrapper->Get_IsComboCut()) // Is false when tree originally created continue; // Combo has been cut previously /********************************************** GET PARTICLE INDICES *********************************************/ //Used for tracking uniqueness when filling histograms, and for determining unused particles //Step 0 Int_t locBeamID = dComboBeamWrapper->Get_BeamID(); //Step 1 Int_t locPiMinus1TrackID = dPiMinus1Wrapper->Get_TrackID(); Int_t locKPlusTrackID = dKPlusWrapper->Get_TrackID(); //Step 2 Int_t locProtonTrackID = dProtonWrapper->Get_TrackID(); Int_t locPiMinus2TrackID = dPiMinus2Wrapper->Get_TrackID(); /*********************************************** GET FOUR-MOMENTUM **********************************************/ // Get P4's: //is kinfit if kinfit performed, else is measured //dTargetP4 is target p4 //Step 0 TLorentzVector locBeamP4 = dComboBeamWrapper->Get_P4(); //Step 1 TLorentzVector locDecayingD0P4 = dDecayingD0Wrapper->Get_P4(); TLorentzVector locPiMinus1P4 = dPiMinus1Wrapper->Get_P4(); TLorentzVector locKPlusP4 = dKPlusWrapper->Get_P4(); //Step 2 TLorentzVector locDecayingLambdaP4 = dDecayingLambdaWrapper->Get_P4(); TLorentzVector locProtonP4 = dProtonWrapper->Get_P4(); TLorentzVector locPiMinus2P4 = dPiMinus2Wrapper->Get_P4(); // Get Measured P4's: //Step 0 TLorentzVector locBeamP4_Measured = dComboBeamWrapper->Get_P4_Measured(); //Step 1 TLorentzVector locPiMinus1P4_Measured = dPiMinus1Wrapper->Get_P4_Measured(); TLorentzVector locKPlusP4_Measured = dKPlusWrapper->Get_P4_Measured(); //Step 2 TLorentzVector locProtonP4_Measured = dProtonWrapper->Get_P4_Measured(); TLorentzVector locPiMinus2P4_Measured = dPiMinus2Wrapper->Get_P4_Measured(); /********************************************* COMBINE FOUR-MOMENTUM ********************************************/ // DO YOUR STUFF HERE // Combine 4-vectors TLorentzVector locMissingP4_Measured = locBeamP4_Measured + dTargetP4; locMissingP4_Measured -= locPiMinus1P4_Measured + locKPlusP4_Measured + locProtonP4_Measured + locPiMinus2P4_Measured; /******************************************** EXECUTE ANALYSIS ACTIONS *******************************************/ // Loop through the analysis actions, executing them in order for the active particle combo if(!Execute_Actions()) //if the active combo fails a cut, IsComboCutFlag automatically set continue; //if you manually execute any actions, and it fails a cut, be sure to call: //dComboWrapper->Set_IsComboCut(true); /**************************************** EXAMPLE: HISTOGRAM BEAM ENERGY *****************************************/ //Histogram beam energy (if haven't already) if(locUsedSoFar_BeamEnergy.find(locBeamID) == locUsedSoFar_BeamEnergy.end()) { dHist_BeamEnergy->Fill(locBeamP4.E()); locUsedSoFar_BeamEnergy.insert(locBeamID); } /************************************ EXAMPLE: HISTOGRAM MISSING MASS SQUARED ************************************/ //Missing Mass Squared double locMissingMassSquared = locMissingP4_Measured.M2(); //Uniqueness tracking: Build the map of particles used for the missing mass //For beam: Don't want to group with final-state photons. Instead use "Unknown" PID (not ideal, but it's easy). map > locUsedThisCombo_MissingMass; locUsedThisCombo_MissingMass[Unknown].insert(locBeamID); //beam locUsedThisCombo_MissingMass[PiMinus].insert(locPiMinus1TrackID); locUsedThisCombo_MissingMass[KPlus].insert(locKPlusTrackID); locUsedThisCombo_MissingMass[Proton].insert(locProtonTrackID); locUsedThisCombo_MissingMass[PiMinus].insert(locPiMinus2TrackID); //compare to what's been used so far if(locUsedSoFar_MissingMass.find(locUsedThisCombo_MissingMass) == locUsedSoFar_MissingMass.end()) { //unique missing mass combo: histogram it, and register this combo of particles dHist_MissingMassSquared->Fill(locMissingMassSquared); locUsedSoFar_MissingMass.insert(locUsedThisCombo_MissingMass); } //E.g. Cut //if((locMissingMassSquared < -0.04) || (locMissingMassSquared > 0.04)) //{ // dComboWrapper->Set_IsComboCut(true); // continue; //} } // end of combo loop //FILL HISTOGRAMS: Num combos / events surviving actions Fill_NumCombosSurvivedHists(); /******************************************* LOOP OVER THROWN DATA (OPTIONAL) ***************************************/ /* //Thrown beam: just use directly if(dThrownBeam != NULL) double locEnergy = dThrownBeam->Get_P4().E(); //Loop over throwns for(UInt_t loc_i = 0; loc_i < Get_NumThrown(); ++loc_i) { //Set branch array indices corresponding to this particle dThrownWrapper->Set_ArrayIndex(loc_i); //Do stuff with the wrapper here ... } */ /****************************************** LOOP OVER OTHER ARRAYS (OPTIONAL) ***************************************/ /* //Loop over beam particles (note, only those appearing in combos are present) for(UInt_t loc_i = 0; loc_i < Get_NumBeam(); ++loc_i) { //Set branch array indices corresponding to this particle dBeamWrapper->Set_ArrayIndex(loc_i); //Do stuff with the wrapper here ... } //Loop over charged track hypotheses for(UInt_t loc_i = 0; loc_i < Get_NumChargedHypos(); ++loc_i) { //Set branch array indices corresponding to this particle dChargedHypoWrapper->Set_ArrayIndex(loc_i); //Do stuff with the wrapper here ... } //Loop over neutral particle hypotheses for(UInt_t loc_i = 0; loc_i < Get_NumNeutralHypos(); ++loc_i) { //Set branch array indices corresponding to this particle dNeutralHypoWrapper->Set_ArrayIndex(loc_i); //Do stuff with the wrapper here ... } */ /************************************ EXAMPLE: FILL CLONE OF TTREE HERE WITH CUTS APPLIED ************************************/ /* Bool_t locIsEventCut = true; for(UInt_t loc_i = 0; loc_i < Get_NumCombos(); ++loc_i) { //Set branch array indices for combo and all combo particles dComboWrapper->Set_ComboIndex(loc_i); // Is used to indicate when combos have been cut if(dComboWrapper->Get_IsComboCut()) continue; locIsEventCut = false; // At least one combo succeeded break; } if(!locIsEventCut && dOutputTreeFileName != "") FillOutputTree(); */ return kTRUE; } void DSelector_d0lc_misslc_lambda::Finalize(void) { //Save anything to output here that you do not want to be in the default DSelector output ROOT file. //Otherwise, don't do anything else (especially if you are using PROOF). //If you are using PROOF, this function is called on each thread, //so anything you do will not have the combined information from the various threads. //Besides, it is best-practice to do post-processing (e.g. fitting) separately, in case there is a problem. //DO YOUR STUFF HERE //CALL THIS LAST DSelector::Finalize(); //Saves results to the output file }