
The (GRIM)REEPER

Ken Livingston

July 14, 2017

(GRIM REEPER Implements Macros to) Read EPICS Events and Plot Everything in ROOT

Figure 1: REEPER windows

1 Overview

(GRIM)REEPER, is a package for plotting EPICS PVs (Process Variables) in ROOT. At it’s simplest it can be
used as a strip chart, and, at it’s most complex, as a general tool for modifying one or more EPICS PVs in a scan,
reading back many PVs and analysing the result. The display (Figure 1) consists of one or more of the following:

Status and control window (left). This is optional.
Graphs (middle). One or more canvases, each with a graph of a PV vs Time, or PVy vs PVx.
MultiGraphs (Right). Showing one or more graphs on the same canvas.

It runs with a command line utility which has 2 modes:

reeper [OPTION]... [PV1] [PV2] ... \\mode1
reeper [ROOT OPTIONS]...[file1.C] ... fileN.C] \\mode2

mode1 is for specification of PVs, scan parameters, fit fuctions etc to set up periodic reading of PVs and plotting
of graphs and multiGraphs. The use of the -w <start, stop, step> option writes an updated value to PV1 before
each time period (with caput commands).

mode2 is for customization using ROOT macros to call the REEPER functions directly.

Examples are given in Section 2 and full documentation in section 3.

1

2 Quickstart

Prequisites

You must be running on a system with a working ROOT installation, EPICS channel access and caget, caput in
your path (and softIOC, if you want to try the simulated examples)

Setup

Source the relevant setup in your .cshrc or .bashrc:
source <reeper_installation>/thisreeper.csh or <reeper_installation>/thisreeper.sh

This sets the environment variable $REEPER to point to the installation directory, and adds it to the $PATH

Examples 1 - specifying PVs on the command line.

These examples use simulation mode (-s flag) which runs a softIOC. The Exit button on the control panel will
kill the softIOC process before quitting ROOT, otherwise it may need to be killed manually, later. The status and
control window is not shown, since it is common to all, and is documented in more detail below.The examples get
progressively more fancy.

• Several different examples of specifying a single PV for plotting (Figure 2)
>reeper -s colliX //plot colliX vs Time
>reeper -s colliX::L //plot colliX vs time, join with line
>reeper -s colliX::C //plot colliX vs time, join with curve
>reeper -s colliX::pol3 //plot colliX vs time, fit with pol3
>reeper -s colliX::pol3,10,20 //plot colliX vs time, fit with pol3 in range 10-20s

Figure 2: Several ways of plotting the graph of a PV using the command line tool

• Multiple PVs can be specified on the command line, with the option of writing (caput) to PV1 to do a scan
(Figure 3)

• >reeper -s -x colliX::pol3 PMT1##gaus,-4,4 Fcup##pol3 //All PVs vs Time and PMT1, Fcup vs colliX, with fits
>reeper -s -w -4,4,0.1 colliX::pol3 PMT1##gaus,-4,4 Fcup##pol3 //As above, but scan from -4 to +4 in colliX

The -x option causes the creation of an extra set of graphs where all PVs are plotted vs PV1.
The -w [start,stop,step] option causes the same behaviour, but actively controls PV1 (colliX) using caput
commands.
For the PVs where a fit is specified, the :: delimiter means the fit is applied to the Time graph, and the ##
delimiter means it is applied to the PV1 graph. Two multiGraphs are also produced - one with all the Time
graphs and one with all the PV1 graphs. The axes on all graphs will autoscale, by default, each time a new

2

point is added unless autoscaling it turned off (toggle autoscaling on the context menu on the graph’s canvas
using the RH mouse button). The colours and symbols are changed automatically for every new graph, in a
tasteless and unpredictable manner, but can be improved by bringing up the editor from the ROOT toolbar.

Figure 3: Multiple PVs, some with fits. Graphs and multiGraphs of all PVs vs Time, and vs PV1 are made

Examples 2 - specifying PVs in a ROOT macro

• The inclusion of one or more .C files on the command line opens ROOT with the REEPER library loaded
and processes arguments in the standard ROOT way. For example:
>reeper grBasic.C //Sets up a simple scan and plots one PV against another
>reeper grScanFancy.C //Shows how to do a 2d scan, fill 2d histograms and read waveforms

The files grBasic.C and grScanFancy.C are included in the $REEPER directory. The run using the built in simu-
lation, and are well commented. They should be used as templates to help write macros to deal with real
PVs.

The ROOT prompt is always available and the global variable nd be used to access the class members functions
and data, which are all public. Yes - plenty of scope for screwing this up! This is all described in section 3.

3 Detailed documentation

A brief description with options, arguments and usage, is given by running >reeper -h (see 3.5). Some more detail
is given here.

REEPER is a collection of functions and variables to do EPICS read/write, and plot the results. All the functions
can be accessed from the ROOT prompt, or by using a ROOT macro. The command line utility reeper calls a
specific set of these commands, then offers the ROOT prompt, where a knowledgeable user could type commands
to generate more graphs, save canvases etc. Access to some commands is provided via the status / control panel,
which is created by default when reeper is called, (or can be brought up by calling makeControlGUI() from the ROOT
prompt).

The documentation below describes aspects of the functionality in an inverse need to know order (the more obscure
and specialised information comes towards the end).

3.1 Control / Status Panel and context menu options

The control panel is shown in Figure 4 (left):

3

Figure 4: Control panel and context menus for panel and graphs / multiGraph canvases

• Stop, Start, Pause/Resume, Exit. Do the obvious.

• Save. Saves the data in several ways:

– PVs are written a text file with columns. Eg.
PV0 = Time
PV1 = colliX
PV2 = PMT1
PV3 = Fcup
#step PV0 PV1 PV2 PV3
0 0.0000 -2.7656 69.3981 243.0320
1 1.0000 -2.0289 631.3830 423.8440
2 2.0000 -2.2597 335.1750 357.4400
3 3.0000 -0.0776 15897.6000 953.7850
4 4.0000 2.2213 5373.3400 722.6930
5 5.0000 -0.8775 6714.0500 768.8300
6 6.0000 2.8360 1642.0800 534.1220
....
....
These can then be easily read back into ROOT as graphs (eg. for PV2, PV3):
g = new TGraph("file","%*s%*s%*s%lg%lg")

– Graphs are written as .root, .pdf, .gif and .C files
– By default they are written with timestamps like this into directory epics_gr, like this:

epics_gr/gr_save_15_05_17-11_07.txt,
epics_gr/Graph2_Fcup_v_Time_15_05_17-11_07.gif ... etc.

– The output directory can be changed that root prompt:
GR->setSaveDir("mydir")

– The list of formats can also be changed: eg.
char *mySaveFormats[] = {"C","pdf",NULL}
GR->setSaveFormats(mySaveFormats)

• nPoints. Number of read events in the scan.

• Period. Time (s) between read. Can be changed with the arrows in increments of 1s.

• Scanning. If a PV is being controlled with caput commands, start,stop,step and current value are shown.

• Read / Write func. Details of user defined read/write functions.

4

• Details. This buttons toggles the visibility of the bottom half of the GUI, which shows the current lists of
PVs, graphs and mulitGraphs.

Context Menus

Some useful REEPER functions are available via ROOT context menus (Figure 4 (right)). Context menus are
brought up by clicking the right mouse button over an item; the options depend on the context (ie the entity over
which the mouse was hovering when clicked).

• Control panel context menu. This is the GrimReeper::TPave menu, shown on top right of the green zone
in Figure 4 (left). The 3 options each pop up a different input dialog box (also shown in the figure). They
are simply calling functions that are part of REEPER, and could also be typed at the ROOT prompt:

– addPV: Add a new PV. If this is mid scan, points relating to earlier time steps are set to zero for this
PV. The new PV now becomes available for making graphs.

– makeGraph: Create a graph from any 2 PVs specified by index. PV0 is always Time. There is the
option to include a fit and range as illustrated in Section 2.

– makeMultiGraph: Create a multiGraph from several graphs, specified by index. The x axis will be
taken from the 1st graph.

• Graph Canvas context menu. This is the standard Graph canvas with an added option at the top:

– toggle autoscale. This toggles the autoscaling on/off for the relevant graph or multiGraph. When
autoscaling is on it will be applied every time the graph is redrawn with new data. The status of
autoscaling can be seen in the bottom part of the control GUI.

3.2 Concepts, coding approach etc

In a counting house, EPICS experts might do quick PV scans using a combination of unix shell tools (sh, awk etc),
piping the output to text files and opening ROOT to make any required graphs and fit the data. The grimReeper
is an attempt to make that easier - particularly for users with limited ROOT and unix experience. The main design
features are:

• PV0 = Time: The fundamental PV for the grimReeper is Time. PV0 is always Time(s), and scanning is
done in time steps.

• Command line use: Basic behaviour is accessible with a simple shell command in the standard unix style.
reeper is a shell(sh) script which parses args and opts and opens ROOT as required.

• ROOT: Once ROOT is opened, all standard functionality is available at the ROOT prompt; the global
variable grimReeper *GR, allows control of scanning, visuals, etc and gives access to the raw PV data. GUI
features are an add-on.

• GUI: Fancy ROOT GUIs are too complicated to produce and need lots of code. The simple GUI functionality
here is using TButton and customization of TContextMenu items.

• Compilation: This is done on the fly, using ROOT’s ACLiC features. No makefiles. The details can be seen
in reeper and grLoad.C. Debugging can be done with gdb if required
For example, see https://wiki.physik.uni-muenchen.de/etp/index.php/Debugging_root_with_gdb.

3.3 Class grimReeper

The grimReeper class definition is in gr.C, which also defines a global variable grimReeper *GR pointing to the (single)
grimReeper object. This allows the member functions to be accessed from the commend line and from TButtons.
For details look into the code. Everything is public, so lots of opportunity to mess things up! Some functions are
worth a special mention, since they are useful for macros:

5

https://wiki.physik.uni-muenchen.de/etp/index.php/Debugging_root_with_gdb

void setMAXPV(int maxpv) \\set max no of PVs that can be added (default = 50)
void setMAXDATA(int data) \\set max no of read points per PV (default = 10000)
Note: The above functions must be called before init()
void intit(); \\set up initial params, arrays etc. This is called implicitly ny addPV()
void addPV(const char *pvstring); \\add PV to the list being read (each call adds 8*MAXDATA bytes to memory used)
void makeGraph(int yPV, int xPV, ...); \\add new graph (each will require memory dynamically up to 16*MAXDATA bytes)
int getPoints() \\number of PV scan points read so far
double **getPVData() \\2d array of PV data: array[PVindex][point]
void setUserWrite(const char *write) \\user function to be called to write PVs for a step
void setUserRead(const char *read) \\user function to be called after scan step period elapsed
void waveToArray(const char *pv, ...); \\read waveform into arrray
void waveToTH1D(const char *pv,...); \\read waveform into 1D histogram bins 1D
void waveToTH2DRow(const char *pv,...); \\read waveform into a row of a 2D histogram

The use is discussed in the next section.

3.4 Custom scans from ROOT macro.

The basic (mode1) command line use of reeper described above can cover most situations where PVs are to be read
and plotted, and can control a single PV to do a 1D scan. However, sometimes more complicated behaviour is
required. For example, filling / fitting 2D hstograms, reading writing waveforms, modifying more than 1 PV during
a scan. This is done by calling grimReeper class functions from within a macro (or compiled code). The required
features are illustrated in example code $REEPER/grScanFancy.C. The macro must do the following:

1. Create an instance of grimReeper, select PVs to be read, make graphs, make canvases, histograms, graphs to
be filled by user defined function(s).

2. Define the function(s) to be called to be called. My own preference is to have a single function:
myFunc(int mode) where mode is INIT(=0), READ(=1) or WRITE(=2)
The read and write modes are called before and after each step period in a scan

Here’s the skeleton of grScanFancy.C:
//Some essential globals
GrimReeper* gr = NULL; //The GrimReeper class
int p = 0; //number of points
double **pvdata = NULL; //All the acquired data
void myFunc(int mode = 0); //custom user function defined below

//Main function
void grScanFancy(){
. gr = new GrimReeper(); //make the main class object, add PVs make graphs etc
.
.
. myFunc(GR_INIT); //Call myFunc(GR_INIT) to do init the specialised part
}

//Function called by GrimReeper
void myFunc(int mode){
.
.
. p = gr->getPoints(); //get the number of points read
. switch (mode){
. case GR_INIT:
.
.
. pvdata = gr->getPVData(); //get the address of the array with all the data points
. gr->setUserRead("myFunc(1)"); //These 2 lines set up REEPER to call myFunc() for Read and Write modes
. gr->setUserWrite("myFunc(2)");
. break;
. case GR_READ: //Called during a scan, after reading the PVs
.
.
. break;
. case GR_WRITE: //called during a scan after reading pvs (and before waiting Period time)
.
.

6

. break;

. default:

. break;

. }
}

3.5 Usage

reeper -h

NAME
. reeper - make ROOT graphs using data read from EPICS PVs

SYNOPSIS
. reeper [OPTION]... [PV]...(mode 1) //mode1
. reeper [ROOT OPTIONS]...[file1.C ... fileN.C] //mode2

DESCRIPTION
. reeper [OPTION]... [PV]... //mode1
. In this mode, make ROOT graphs by reading EPICS values periodically and plots graphs of all PVs against time.

. If -x or -w option is specified, additional graphs of all PVs against the 1st PV in the list are made

. Multigraphs with all graphs using the same x-axis are also created.

. See EXAMPLES 1, below

.

. -t period

. set the period (ie time(s)) between reads. Default = 2s

.

. -x

. make additional graphs of all PVs against the 1st in the list

.

. -w start,stop,step

. As -x, but additionally, write to the 1st of the listed PVs to do a scan. Must be 3 comma separated values.

. After each time period the next value will be written to the PV

.

. -q

. Quiet (and quick). Won’t pop up a GUI and won’t ask for confrmation if scanning (with -w option).

.

. -s simulation mode. For testing

. The following PVs are available: PV23004,colliX,PMT1,Fcup,Xsetting,Ysetting,BigScaler,BigScaler,AMO_SCALERS

. These are updated by starting a softIOC and running a ROOT script.

.

. -h

. print this help message

. [PV]...

. EPICS PV. Can include an optional fit and fit range. For example:

. MyScalerRate

. MyScalerRate:pol4 will fit 4th deg poly to the graph of this PV

. MyScalerRate:pol4,1.2,10.4 will fit 4th deg poly to the graph in the x-axis range 1.2 - 10.4

. If -x or -w option is selected, any specified fits will be applied to the graph of PV vs PV0

. Otherwise, the fit will be applied to the graph of PV vs Time

. For PV0, any specified fit will always be fitted vs Time

. Choosing a fit of L or C (no range needed) will join the points with a line(L) or curve(C)

. reeper [ROOT OPTIONS]...[file1.C ... fileN.C] (mode2)

. In this mode call root with the reeper library loaded then set up customised behaviour in .C macros.

. See EXAMPLES 2, below.

EXAMPLES 1
. Note. These examples use the -s flag, for simulated data. Try them
. reeper -s colliX PMT1 Fcup //makes graphs of each of the above PVs vs time
. reeper -s -x colliX PMT1 Fcup //as above, but additionally makes graphs of PMT1 and Fcup vs colliX
. reeper -s -w -2.0,2.0,0.1 colliX PMT1 Fcup //as above but scans on colliX from -2.0 -> 2.0 in steps on 0.1
. reeper -s -w -2.0,2.0,0.1 colliX PMT1::gaus Fcup::gaus,-1.0,1.0 //as above but fits gaus to PMT1 and Fcup
. vs colliX (restricted range for the latter)

7

EXAMPLES 2
. Note. These examples use root macros to do EPICS PV plotting. All use simulated PVs in a softIOC.
. The macros are templates to show how to use the GrimReeper features. Copy and hack.
. reeper /home/kl/Dropbox/epics/reeper/grBasic.C //simple scan plotting one PV against another
. reeper /home/kl/Dropbox/epics/reeper/grScanFancy.C //2D scan, filling 2d hists and reading waveforms.
.
AUTHOR
. Written by Ken Livingston

SEE ALSO
. reeper is part of the (GRIM)REEPER package (GRIM REEPER Implements Macros to) Read EPICS Events and Plot Everything
. in ROOT) Full documentation at: <http:slowcontrols wiki>

8

	Overview
	Quickstart
	Detailed documentation
	Control / Status Panel and context menu options
	Concepts, coding approach etc
	Class grimReeper
	Custom scans from ROOT macro.
	Usage

