SUBROUTINE CASPIP(INT,NFL) c SUBROUTINE CASPIP(K,INT,NFL) C C *** CASCADE OF PI+ *** C *** NVE 04-MAY-1988 CERN GENEVA *** C C ORIGIN : H.FESEFELDT (18-SEP-1987) C C PI+ UNDERGOES INTER ACTION WITH NUCLEON WITHIN NUCLEUS. C CHECK IF ENERGETICALLY POSSIBLE TO PRODUCE PIONS/KAONS. C IF NOT ASSUME NUCLEAR EXCITATION OCCURS AND INPUT PARTICLE C IS DEGRADED IN ENERGY. NO OTHER PARTICLES PRODUCED. C IF REACTION IS POSSIBLE FIND CORRECT NUMBER OF PIONS/PROTONS/ C NEUTRONS PRODUCED USING AN INTERPOLATION TO MULTIPLICITY DATA. C REPLACE SOME PIONS OR PROTONS/NEUTRONS BY KAONS OR STRANGE BARYONS C ACCORDING TO AVERAGE MULTIPLICITY PER INELASTIC REACTIONS. C #include "ghcdes/mxgkgh.inc" #include "ghcdes/consts.inc" #include "ghcdes/curpar.inc" #include "ghcdes/result.inc" #include "ghcdes/prntfl.inc" #include "ghcdes/limits.inc" #include "ghcdes/kginit.inc" C REAL N DIMENSION PMUL(2,1200),ANORM(2,60),SUPP(10),CECH(10),B(2) DIMENSION RNDM(1) SAVE PMUL,ANORM DATA SUPP/0.,0.2,0.45,0.55,0.65,0.75,0.85,0.90,0.94,0.98/ DATA CECH/0.33,0.27,0.29,0.31,0.27,0.18,0.13,0.10,0.09,0.07/ DATA B/0.7,0.7/,C/1.25/ C INTEGER *4 NFLFORCE/0/ CHARACTER *(*) COMMAND INTEGER *4 IDUMM C C --- INITIALIZATION INDICATED BY KGINIT(18) --- IF (KGINIT(18) .NE. 0) GO TO 10 KGINIT(18)=1 C C --- INITIALIZE PMUL AND ANORM ARRAYS --- DO 9000 J=1,1200 DO 9001 I=1,2 PMUL(I,J)=0.0 IF (J .LE. 60) ANORM(I,J)=0.0 9001 CONTINUE 9000 CONTINUE C C** COMPUTE NORMALIZATION CONSTANTS C** FOR P AS TARGET C L=0 DO 1 NP1=1,20 NP=NP1-1 NMM1=NP1-2 IF(NMM1.LE.1) NMM1=1 DO 1 NM1=NMM1,NP1 NM=NM1-1 DO 1 NZ1=1,20 NZ=NZ1-1 L=L+1 IF(L.GT.1200) GOTO 1 NT=NP+NM+NZ IF(NT.LE.0.OR.NT.GT.60) GOTO 1 PMUL(1,L)=PMLTPC(NP,NM,NZ,NT,B(1),C) ANORM(1,NT)=ANORM(1,NT)+PMUL(1,L) 1 CONTINUE C** FOR N AS TARGET L=0 DO 2 NP1=1,20 NP=NP1-1 NMM1=NP1-1 IF(NMM1.LE.1) NMM1=1 NPP1=NP1+1 DO 2 NM1=NMM1,NPP1 NM=NM1-1 DO 2 NZ1=1,20 NZ=NZ1-1 L=L+1 IF(L.GT.1200) GOTO 2 NT=NP+NM+NZ IF(NT.LE.0.OR.NT.GT.60) GOTO 2 PMUL(2,L)=PMLTPC(NP,NM,NZ,NT,B(2),C) ANORM(2,NT)=ANORM(2,NT)+PMUL(2,L) 2 CONTINUE DO 3 I=1,60 IF(ANORM(1,I).GT.0.) ANORM(1,I)=1./ANORM(1,I) IF(ANORM(2,I).GT.0.) ANORM(2,I)=1./ANORM(2,I) 3 CONTINUE IF(.NOT.NPRT(10)) GOTO 10 WRITE(NEWBCD,2001) DO 4 NFL=1,2 WRITE(NEWBCD,2002) NFL WRITE(NEWBCD,2003) (ANORM(NFL,I),I=1,60) WRITE(NEWBCD,2003) (PMUL(NFL,I),I=1,1200) 4 CONTINUE C** CHOOSE PROTON OR NEUTRON AS TARGET 10 CONTINUE IF(NFLFORCE.EQ.0) THEN NFL=2 CALL GRNDM(RNDM,1) IF(RNDM(1).LT.ZNO2/ATNO2) NFL=1 ELSE NFL=NFLFORCE ENDIF !NFLFORCE.EQ.0 TARMAS=RMASS(14) IF (NFL .EQ. 2) TARMAS=RMASS(16) S=AMASQ+TARMAS**2+2.0*TARMAS*EN RS=SQRT(S) ENP(8)=AMASQ+TARMAS**2+2.0*TARMAS*ENP(6) ENP(9)=SQRT(ENP(8)) EAB=RS-TARMAS-RMASS(7) C C** ELASTIC SCATTERING NP=0 NM=0 NZ=0 N=0. IPA(1)=7 IPA(2)=14 IF(NFL.EQ.2) IPA(2)=16 IF(INT.EQ.2) GOTO 20 C** FOR PI+ N REACTIONS CHANGE SOME OF THE ELASTIC CROSS SECTION C** TO PI+ N --> PI0 P IF(NFL.EQ.1) GOTO 100 IPLAB=IFIX(P *5.)+1 IF(IPLAB.GT.10) IPLAB=10 CALL GRNDM(RNDM,1) IF(RNDM(1).GT.CECH(IPLAB)/ATNO2**0.42) GOTO 100 IPA(1)=8 IPA(2)=14 GOTO 100 C** CHECK IF ENERGETICALLY POSSIBLE TO PRODUCE ONE EXTRA PION IN REACT. 20 IF (EAB .LE. RMASS(7)) GOTO 55 C** SUPPRESSION OF HIGH MULTIPLICITY EVENTS AT LOW MOMENTUM IEAB=IFIX(EAB*5.)+1 IF(IEAB.GT.10) GOTO 22 CALL GRNDM(RNDM,1) IF(RNDM(1).LT.SUPP(IEAB)) GOTO 22 N=1. GOTO (23,24),NFL 23 CONTINUE TEST=-(1+B(1))**2/(2.0*C**2) IF (TEST .LE. EXPXL) TEST=EXPXL IF (TEST .GE. EXPXU) TEST=EXPXU W0=EXP(TEST) WP=EXP(TEST) CALL GRNDM(RNDM,1) RAN=RNDM(1) NP=0 NM=0 NZ=1 IF(RAN.LT.W0/(W0+WP)) GOTO 50 NP=1 NM=0 NZ=0 GOTO 50 24 CONTINUE TEST=-(1+B(2))**2/(2.0*C**2) IF (TEST .LE. EXPXL) TEST=EXPXL IF (TEST .GE. EXPXU) TEST=EXPXU W0=EXP(TEST) WP=EXP(TEST) TEST=-(-1+B(2))**2/(2.0*C**2) IF (TEST .LE. EXPXL) TEST=EXPXL IF (TEST .GE. EXPXU) TEST=EXPXU WM=EXP(TEST) WT=W0+WP+WM WP=W0+WP CALL GRNDM(RNDM,1) RAN=RNDM(1) NP=0 NM=0 NZ=1 IF(RAN.LT.W0/WT) GOTO 50 NP=1 NM=0 NZ=0 IF(RAN.LT.WP/WT) GOTO 50 NP=0 NM=1 NZ=0 GOTO 50 C 22 ALEAB=LOG(EAB) C** NO. OF TOTAL PARTICLES VS SQRT(S)-2*MP N=3.62567+0.665843*ALEAB+0.336514*ALEAB*ALEAB * +0.117712*ALEAB*ALEAB*ALEAB+0.0136912*ALEAB*ALEAB*ALEAB*ALEAB N=N-2. C** NORMALIZATION CONSTANT FOR KNO-DISTRIBUTION ANPN=0. DO 21 NT=1,60 TEST=-(PI/4.0)*(NT/N)**2 IF (TEST .LE. EXPXL) TEST=EXPXL IF (TEST .GE. EXPXU) TEST=EXPXU DUM1=PI*NT/(2.0*N*N) DUM2=ABS(DUM1) DUM3=EXP(TEST) ADDNVE=0.0 IF (DUM2 .GE. 1.0) ADDNVE=DUM1*DUM3 IF ((DUM2 .LT. 1.0) .AND. (DUM3 .GE. 1.0E-10)) ADDNVE=DUM1*DUM3 ANPN=ANPN+ADDNVE 21 CONTINUE ANPN=1./ANPN C** P OR N AS TARGET CALL GRNDM(RNDM,1) RAN=RNDM(1) EXCS=0. GOTO (30,40),NFL C** FOR P AS TARGET 30 L=0 DO 31 NP1=1,20 NP=NP1-1 NMM1=NP1-2 IF(NMM1.LE.1) NMM1=1 DO 31 NM1=NMM1,NP1 NM=NM1-1 DO 31 NZ1=1,20 NZ=NZ1-1 L=L+1 IF(L.GT.1200) GOTO 31 NT=NP+NM+NZ IF(NT.LE.0.OR.NT.GT.60) GOTO 31 TEST=-(PI/4.0)*(NT/N)**2 IF (TEST .LE. EXPXL) TEST=EXPXL IF (TEST .GE. EXPXU) TEST=EXPXU DUM1=ANPN*PI*NT*PMUL(1,L)*ANORM(1,NT)/(2.0*N*N) DUM2=ABS(DUM1) DUM3=EXP(TEST) ADDNVE=0.0 IF (DUM2 .GE. 1.0) ADDNVE=DUM1*DUM3 IF ((DUM2 .LT. 1.0) .AND. (DUM3 .GE. 1.0E-10)) ADDNVE=DUM1*DUM3 EXCS=EXCS+ADDNVE IF(RAN.LT.EXCS) GOTO 50 31 CONTINUE GOTO 80 C** FOR N AS TARGET 40 L=0 DO 41 NP1=1,20 NP=NP1-1 NMM1=NP1-1 IF(NMM1.LE.1) NMM1=1 NPP1=NP1+1 DO 41 NM1=NMM1,NPP1 NM=NM1-1 DO 41 NZ1=1,20 NZ=NZ1-1 L=L+1 IF(L.GT.1200) GOTO 41 NT=NP+NM+NZ IF(NT.LE.0.OR.NT.GT.60) GOTO 41 TEST=-(PI/4.0)*(NT/N)**2 IF (TEST .LE. EXPXL) TEST=EXPXL IF (TEST .GE. EXPXU) TEST=EXPXU DUM1=ANPN*PI*NT*PMUL(2,L)*ANORM(2,NT)/(2.0*N*N) DUM2=ABS(DUM1) DUM3=EXP(TEST) ADDNVE=0.0 IF (DUM2 .GE. 1.0) ADDNVE=DUM1*DUM3 IF ((DUM2 .LT. 1.0) .AND. (DUM3 .GT. 1.0E-10)) ADDNVE=DUM1*DUM3 EXCS=EXCS+ADDNVE IF(RAN.LT.EXCS) GOTO 50 41 CONTINUE GOTO 80 50 GOTO (60,65),NFL 60 IF(NP.EQ.1+NM) GOTO 61 IF(NP.EQ.2+NM) GOTO 63 IPA(1)=7 IPA(2)=14 GOTO 100 61 CALL GRNDM(RNDM,1) IF(RNDM(1).LT.0.5) GOTO 62 IPA(1)=7 IPA(2)=16 GOTO 100 62 IPA(1)=8 IPA(2)=14 GOTO 100 63 IPA(1)=8 IPA(2)=16 GOTO 100 65 IF(NP.EQ.NM) GOTO 66 IF(NP.EQ.1+NM) GOTO 68 IPA(1)=7 IPA(2)=14 GOTO 100 66 CALL GRNDM(RNDM,1) IF(RNDM(1).LT.0.25) GOTO 67 IPA(1)=7 IPA(2)=16 GOTO 100 67 IPA(1)=8 IPA(2)=14 GOTO 100 68 IPA(1)=8 IPA(2)=16 GOTO 100 70 IF(NPRT(4)) *WRITE(NEWBCD,1003) EAB,N,NFL,NP,NM,NZ CALL STPAIR IF(INT.EQ.1) CALL TWOB(7,NFL,N) IF(INT.EQ.2) CALL GENXPT(7,NFL,N) GO TO 9999 55 IF(NPRT(4)) *WRITE(NEWBCD,1001) GOTO 53 C** EXCLUSIVE REACTION NOT FOUND 80 IF(NPRT(4)) *WRITE(NEWBCD,1004) RS,N 53 INT=1 NP=0 NM=0 NZ=0 N=0. IPA(1)=7 IPA(2)=14 IF(NFL.EQ.2) IPA(2)=16 100 DO 101 I=3,60 101 IPA(I)=0 IF(INT.LE.0) GOTO 131 NT=2 IF(NP.EQ.0) GOTO 122 DO 121 I=1,NP NT=NT+1 121 IPA(NT)=7 122 IF(NM.EQ.0) GOTO 124 DO 123 I=1,NM NT=NT+1 123 IPA(NT)=9 124 IF(NZ.EQ.0) GOTO 130 DO 125 I=1,NZ NT=NT+1 125 IPA(NT)=8 130 IF(NPRT(4)) *WRITE(NEWBCD,2004) NT,(IPA(I),I=1,20) IF(IPA(1).EQ.7) NP=NP+1 IF(IPA(1).EQ.8) NZ=NZ+1 IF(IPA(1).EQ.9) NM=NM+1 GOTO 70 131 IF(NPRT(4)) *WRITE(NEWBCD,2005) C 1001 FORMAT('0*CASPIP* CASCADE ENERGETICALLY NOT POSSIBLE', $ ' CONTINUE WITH QUASI-ELASTIC SCATTERING') 1003 FORMAT(' *CASPIP* PION+ -INDUCED CASCADE,', $ ' AVAIL. ENERGY',2X,F8.4, $ 2X,'',2X,F8.4,2X,'FROM',4(2X,I3),2X,'PARTICLES') 1004 FORMAT(' *CASPIP* PION+ -INDUCED CASCADE,', $ ' EXCLUSIVE REACTION NOT FOUND', $ ' TRY ELASTIC SCATTERING AVAIL. ENERGY',2X,F8.4,2X, $ '',2X,F8.4) 2001 FORMAT('0*CASPIP* TABLES FOR MULT. DATA PION+ INDUCED REACTION', $ ' FOR DEFINITION OF NUMBERS SEE FORTRAN CODING') 2002 FORMAT(' *CASPIP* TARGET PARTICLE FLAG',2X,I5) 2003 FORMAT(1H ,10E12.4) 2004 FORMAT(' *CASPIP* ',I3,2X,'PARTICLES , MASS INDEX ARRAY',2X,20I4) 2005 FORMAT(' *CASPIP* NO PARTICLES PRODUCED') C 9999 CONTINUE RETURN C ENTRY CASPIPSET(COMMAND,IDUMM) IF(COMMAND.EQ.'SET:NFLFORCE') THEN NFLFORCE=IDUMM ENDIF !COMMAND.EQ.'SET:NFLFORCE' RETURN END